Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Biomaterials ; 310: 122624, 2024 Oct.
Article En | MEDLINE | ID: mdl-38805956

The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns -flat, pyramidal, striped and wavy- to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine interfaces.


Electrodes , Machine Learning , Polystyrenes , Printing, Three-Dimensional , Textiles , Humans , Polystyrenes/chemistry , Electric Conductivity , Wearable Electronic Devices , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Gels/chemistry , Polymers/chemistry , Polyethylene Glycols/chemistry , Electromyography/methods , Biocompatible Materials/chemistry
2.
Mater Horiz ; 10(7): 2516-2524, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37067040

Deep Eutectic Solvents (DES) are a new class of ionic conductive compounds attracting significant attention as greener alternatives to costly ionic liquids. Herein, we developed novel mixed ionic-electronic conducting materials by simple mixing of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and various DES as additives. The DES addition induces the supramolecular assembly and gelification of PEDOT:PSS forming eutectogels triggered by extensive hydrogen bonding and charge stabilization. The eutectogels feature boosts the mixed ionic-electronic conductivity of PEDOT:PSS up to 368 S cm-1, unveiling great potential as flexible bioelectronics. All the PEDOT:PSS/DES gels showed shear-thinning behavior and viscosity values ranging from 100 to 1000 Pa s. The eutectogels show good injectability with almost instantaneous elastic recovery, making them ideal materials for direct ink writing (DIW). As proof of that, PEDOT:PSS/DES (choline chloride:lactic acid) was 3D printed in different patterns, annealed at high temperature, and assembled into adhesive electrodes. This way tattoos-like electrodes, denoted as Eutecta2 were fabricated and placed in vivo on the forearm and the thumb of human volunteers for electromyography measurements. Eutecta2 hexagonal patterns showed excellent conformability, and their signal-to-noise ratio (SNR) was higher than Ag/AgCl commercial electrodes for thumb motion measurements. Furthermore, forearm motion was measured after 14 days with similar values of SNR, demonstrating long-term stability and reusability. All in all, our findings revealed that DES could be used as inexpensive and safe additives to direct the self-assembly of PEDOT:PSS into supramolecular eutectogels inks for flexible bioelectronics.

3.
ACS Biomater Sci Eng ; 8(6): 2598-2609, 2022 06 13.
Article En | MEDLINE | ID: mdl-35649235

Iongels are soft ionic conducting materials, usually composed of polymer networks swollen with ionic liquids (ILs), which are being investigated for applications ranging from energy to bioelectronics. The employment of iongels in bioelectronic devices such as bioelectrodes or body sensors has been limited by the lack of biocompatibility of the ILs and/or polymer matrices. In this work, we present iongels prepared from solely biocompatible materials: (i) a biobased polymer network containing tannic acid as a cross-linker in a gelatin matrix and (ii) three different biocompatible cholinium carboxylate ionic liquids. The resulting iongels are flexible and elastic with Young's modulus between 11.3 and 28.9 kPa. The morphology of the iongels is based on a dual polymer network system formed by both chemical bonding due to the reaction of the gelatin's amines with the polyphenol units and physical interactions between the tannic acid and the gelatin. These biocompatible iongels presented high ionic conductivity values, from 0.003 and up to 0.015 S·cm-1 at room temperature. Furthermore, they showed excellent performance as a conducting gel in electrodes for electromyography and electrocardiogram recording as well as muscle stimulation.


Gelatin , Ionic Liquids , Electrodes , Gelatin/pharmacology , Muscles , Polymers , Tannins/pharmacology
...