Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(5): 1364-1376, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751641

RESUMEN

Triple negative breast cancer (TNBC) represents a subtype of breast cancer that does not express the three major prognostic receptors of human epidermal growth factor receptor 2 (HER2), progesterone (PR), and estrogen (ER). This limits treatment options and results in a high rate of mortality. We have reported previously on the efficacy of a water-soluble, cationic organometallic compound (Ru-IM) in a TNBC mouse xenograft model with impressive tumor reduction and targeted tumor drug accumulation. Ru-IM inhibits cancer hallmarks such as migration, angiogenesis, and invasion in TNBC cells by a mechanism that generates apoptotic cell death. Ru-IM displays little interaction with DNA and appears to act by a P53-independent pathway. We report here on the mitochondrial alterations caused by Ru-IM treatment and detail the inhibitory properties of Ru-IM in the PI3K/AKT/mTOR pathway in MDA-MB-231 cells. Lastly, we describe the results of an efficacy study of the TNBC xenografted mouse model with Ru-IM and Olaparib monotherapy and combinatory treatments. We find 59% tumor shrinkage with Ru-IM and 65% with the combination. Histopathological analysis confirmed no test-article-related toxicity. Immunohistochemical analysis indicated an inhibition of the angiogenic marker CD31 and increased levels of apoptotic cleaved caspase 3 marker, along with a slight inhibition of p-mTOR. Taken together, the effects of Ru-IM in vitro show similar trends and translation in vivo. Our investigation underscores the therapeutic potential of Ru-IM in addressing the challenges posed by TNBC as evidenced by its robust efficacy in inhibiting key cancer hallmarks, substantial tumor reduction, and minimal systemic toxicity.

2.
RSC Med Chem ; 15(1): 139-150, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283233

RESUMEN

Overexpression of the human epidermal growth factor receptor 2 (HER2) is found in 20-30% of breast cancer tumors (HER2-positive breast cancers) and is associated with more aggressive onset of disease, higher recurrence rate and increased mortality. Monoclonal antibodies (mAb) like trastuzumab and pertuzumab in combination with chemotherapeutics, and trastuzumab-based antibody drug conjugates (ADCs) are used in the clinic to treat these cancers. An alternative targeted strategy (not yet in clinical use) is the encapsulation of chemotherapeutic drugs in immunoliposomes. Such systems may not only facilitate targeted delivery to the tumor and improve intracellular penetration, but also override some of the resistance developed by tumors in response to cytotoxic loads. As a supplement to classical chemotherapeutics (based on organic compounds and conventional platinum-based derivatives), gold compounds are emerging as potential anticancer agents due to their high cytotoxicity and capacity for immunogenic cell death. Here, we describe the development of immunoliposomes functionalized with trastuzumab and pertuzumab; containing simple gold(i) neutral compounds ([AuCl(PR3)] (PR3 = PPh3 (1), PEt3 (2))) generated by the thin-film method to afford Lipo-1-Lipo-2. Trastuzumab and pertuzumab were engrafted onto these liposomes to generate gold-based immunoliposomes (Immunolipo-Tras-1, Immunolipo-Tras-2, Immunolipo-Per-1, Immunolipo-Per-2). We have characterized all liposomal formulations and demonstrated that the immunoliposomes (190 nm) are stable, have high binding affinity for HER2, and display selective cytotoxicity towards HER2-positive breast cancer cell lines. Trastuzumab-based immunoliposomes of a smaller size (100 nm) - encapsulating [AuCl(PEt3)] (2) - have been generated by an extrusion homogenization method. These optimized immunoliposomes (Opt-Immunolipo-Tras-2) have a trastuzumab engraftment efficiency, encapsulation efficiency for 2, and affinity for HER-2 similar to the immunoliposomes obtained by sonication (Immunolipo-Tras-2). While the amount of Au encapsulated is slightly lower, they display almost identical cytotoxicity and selectivity profiles. Moreover, the fluorescently-labeled phosphane drug [AuCl(PPh2-BODIPY)] (3) was encapsulated in both larger (Immunolipo-Tras-3) and smaller (Opt-Immunolipo-Tras-3) immunoliposomes and used to visualize the intracellular localization of the payload. Fluorescent imaging studies found that Opt-Immunolipo-Tras-3 accumulates in the cells more than 3 and that the unencapsulated payload accumulates primarily in lysosomes, while targeted liposomal 3 localizes in mitochondria and ER, hinting at different possibilities for modes of action.

4.
ACS Pharmacol Transl Sci ; 6(12): 1972-1986, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093840

RESUMEN

Antibody-drug conjugates (ADCs) combine the selectivity of monoclonal antibodies (mAbs) with the efficacy of chemotherapeutics to target cancers without toxicity to normal tissue. Clinically, most chemotherapeutic ADCs are based on complex organic molecules, while the conjugation of metallodrugs to mAbs has been overlooked, despite the resurgent interest in metal-based drugs as cancer chemotherapeutics. In 2019, we described the first gold ADCs containing gold-triphenylphosphane fragments as a proof of concept. The ADCs (based on the antibody trastuzumab) were selective and highly active against HER2-positive breast cancer cells. In this study, we developed site-specific ADCs (Thio-1b and Thio-2b) using the cysteine-engineered trastuzumab derivative THIOMAB antibody technology with gold(I)-containing phosphanes and a maleimide-based linker amenable to bioconjugation (1b and 2b). In addition, we developed lysine-directed ADCs with gold payloads based on phosphanes and N-heterocyclic carbenes featuring an activated ester moiety (2c and 5c) with trastuzumab (Tras-2c and Tras-5c) and another anti-HER2 antibody, pertuzumab (Per-2c and Per-5c). Both sets of ADCs demonstrated significant anticancer potency in vitro assays. Based on these results, one ADC (Tras-2c), containing the [Au(PEt3)] fragment present in FDA-approved auranofin, was selected for an in vivo antitumor efficacy study. Immunocompromised mice xenografted with the HER2-positive human cancer cell line SKBR-3 exhibited almost complete tumor reduction and low toxicity with intravenous administration of Tras-2c. With this highly selective targeting system, we demonstrated that a subnanomolar cytotoxicity profile in cells is not required for an impressive antitumor effect in a mouse xenograft model.

5.
Chemistry ; 29(59): e202302045, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37507346

RESUMEN

New heterometallic binuclear and trinuclear platinum(IV)-gold(I) compounds of the type [Pt(L)n Cl2 (OH){(OOC-4-C6 H4 -PPh2 )AuCl}x ] (L=NH3 , n=2; x=1, 2; L=diaminocyclohexane, DACH, n=1; x=2) are described. These compounds are cytotoxic and selective against a small panel of renal, bladder, ovarian, and breast cancer cell lines. We selected a trinuclear PtAu2 compound containing the PtIV core based on oxaliplatin, to further investigate its cell-death pathway, cell and organelle uptake and anticancer effects against the triple-negative breast cancer (TNBC) MDA-MB-231 cell line. This compound induces apoptosis and accumulates mainly in the nucleus and mitochondria. It also exerts remarkable antimigratory and antiangiogenic properties, and has a potent cytotoxic effect against TNBC 3D spheroids. Trinuclear compounds do not seem to display relevant interactions with calf thymus (CT) DNA and plasmid (pBR322) even in the presence of reducing agents, but inhibit pro-angiogenic enzyme thioredoxin reductase (TrxR) in TNBC cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Platino (Metal) , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Oro , Antineoplásicos/farmacología , Oxaliplatino , Línea Celular Tumoral
6.
Theranostics ; 10(25): 11359-11375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052220

RESUMEN

This is the initial report of an α-based pre-targeted radioimmunotherapy (PRIT) using 225Ac and its theranostic pair, 111In. We call our novel tumor-targeting DOTA-hapten PRIT system "proteus-DOTA" or "Pr." Herein we report the first results of radiochemistry development, radiopharmacology, and stoichiometry of tumor antigen binding, including the role of specific activity, anti-tumor efficacy, and normal tissue toxicity with the Pr-PRIT approach (as α-DOTA-PRIT). A series of α-DOTA-PRIT therapy studies were performed in three solid human cancer xenograft models of colorectal cancer (GPA33), breast cancer (HER2), and neuroblastoma (GD2), including evaluation of chronic toxicity at ~20 weeks of select survivors. Methods: Preliminary biodistribution experiments in SW1222 tumor-bearing mice revealed that 225Ac could not be efficiently pretargeted with current DOTA-Bn hapten utilized for 177Lu or 90Y, leading to poor tumor uptake in vivo. Therefore, we synthesized Pr consisting of an empty DOTA-chelate for 225Ac, tethered via a short polyethylene glycol linker to a lutetium-complexed DOTA for picomolar anti-DOTA chelate single-chain variable fragment (scFv) binding. Pr was radiolabeled with 225Ac and its imaging surrogate, 111In. In vitro studies verified anti-DOTA scFv recognition of [225Ac]Pr, and in vivo biodistribution and clearance studies were performed to evaluate hapten suitability and in vivo targeting efficiency. Results: Intravenously (i.v.) administered 225Ac- or 111In-radiolabeled Pr in mice showed rapid renal clearance and minimal normal tissue retention. In vivo pretargeting studies show high tumor accumulation of Pr (16.71 ± 5.11 %IA/g or 13.19 ± 3.88 %IA/g at 24 h p.i. for [225Ac]Pr and [111In]Pr, respectively) and relatively low uptake in normal tissues (all average ≤ 1.4 %IA/g at 24 h p.i.). Maximum tolerated dose (MTD) was not reached for either [225Ac]Pr alone or pretargeted [225Ac]Pr at administered activities up to 296 kBq/mouse. Single-cycle treatment consisting of α-DOTA-PRIT with either huA33-C825 bispecific anti-tumor/anti-DOTA-hapten antibody (BsAb), anti-HER2-C825 BsAb, or hu3F8-C825 BsAb for targeting GPA33, HER2, or GD2, respectively, was highly effective. In the GPA33 model, no complete responses (CRs) were observed but prolonged overall survival of treated animals was 42 d for α-DOTA-PRIT vs. 25 d for [225Ac]Pr only (P < 0.0001); for GD2, CRs (7/7, 100%) and histologic cures (4/7, 57%); and for HER2, CRs (7/19, 37%) and histologic cures (10/19, 56%) with no acute or chronic toxicity. Conclusions: [225Ac]Pr and its imaging biomarker [111In]Pr demonstrate optimal radiopharmacologic behavior for theranostic applications of α-DOTA-PRIT. For this initial evaluation of efficacy and toxicity, single-cycle treatment regimens were performed in all three systems. Histologic toxicity was not observed, so MTD was not observed. Prolonged overall survival, CRs, and histologic cures were observed in treated animals. In comparison to RIT with anti-tumor IgG antibodies, [225Ac]Pr has a much improved safety profile. Ultimately, these data will be used to guide clinical development of toxicity and efficacy studies of [225Ac]Pr, with the goal of delivering massive lethal doses of radiation to achieve a high probability of cure without toxicity.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias/terapia , Radioinmunoterapia/métodos , Radiofármacos/administración & dosificación , Nanomedicina Teranóstica/métodos , Actinio/administración & dosificación , Actinio/farmacocinética , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Femenino , Semivida , Compuestos Heterocíclicos con 1 Anillo/administración & dosificación , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Humanos , Radioisótopos de Indio/administración & dosificación , Radioisótopos de Indio/farmacocinética , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/patología , Radioinmunoterapia/efectos adversos , Radiofármacos/química , Radiofármacos/farmacocinética , Dosificación Radioterapéutica , Distribución Tisular , Pruebas de Toxicidad Crónica , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cell Biol ; 39(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31262999

RESUMEN

Cellular communication network factor 1 (CCN1) is a dynamically expressed, matricellular protein required for vascular development and tissue repair. The CCN1 gene is a presumed target of Yes-associated protein (YAP), a transcriptional coactivator that regulates cell growth and organ size. Herein, we demonstrate that the CCN1 promoter is indeed a direct genomic target of YAP in endothelial cells (ECs) of new blood vessel sprouts and that YAP deficiency in mice downregulates CCN1 and alters cytoskeletal and mitogenic gene expression. Interestingly, CCN1 overexpression in cultured ECs inactivates YAP in a negative feedback and causes its nuclear exclusion. Accordingly, EC-specific deletion of the CCN1 gene in mice mimics a YAP gain-of-function phenotype, characterized by EC hyperproliferation and blood vessel enlargement. CCN1 brings about its effect by providing cells with a soft compliant matrix that creates YAP-repressive cytoskeletal states. Concordantly, pharmacological inhibition of cell stiffness recapitulates the CCN1 deletion vascular phenotype. Furthermore, adeno-associated virus-mediated expression of CCN1 reversed the pathology of YAP hyperactivation and the subsequent aberrant growth of blood vessels in mice with ischemic retinopathy. Our studies unravel a new paradigm of functional interaction between CCN1 and YAP and underscore the significance of their interplay in the pathogenesis of neovascular diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 61 Rica en Cisteína/genética , Enfermedades de la Retina/metabolismo , Vasos Retinianos/patología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Proliferación Celular , Proteína 61 Rica en Cisteína/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Vasos Retinianos/citología , Vasos Retinianos/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
8.
J Nucl Med ; 59(12): 1894-1900, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29903928

RESUMEN

There remains an urgent need for the noninvasive tracking of transfused chimeric antigen receptor (CAR) T cells to determine their biodistribution, viability, expansion, and antitumor functionality. DOTA antibody reporter 1 (DAbR1) comprises a single-chain fragment of the antilanthanoid-DOTA antibody 2D12.5/G54C fused to the human CD4-transmembrane domain and binds irreversibly to lanthanoid (S)-2-(4-acrylamidobenzyl)-DOTA (AABD). The aim of this study was to investigate whether DAbR1 can be expressed on lymphocytes and used as a reporter gene as well as a suicide gene for therapy of immune-related adverse effects. Methods: DAbR1 was subcloned together with green fluorescent protein into an SFG-retroviral vector and used to transduce CD3/CD28-activated primary human T cells and second-generation 1928z (CAR) T cells. Cell surface expression of DAbR1 was confirmed by cell uptake studies with radiolabeled AABD. In addition, the feasibility of imaging of DAbR1-positive T cells in vivo after intravenous injection of 86Y/177Lu-AABD was studied and radiation doses determined. Results: A panel of DAbR1-expressing T cells and CAR T cells exhibited greater than 8-fold increased uptake of 86Y-AABD in vitro when compared with nontransduced cells. Imaging studies showed 86Y-AABD was retained by DAbR1-positive T cells while it continuously cleared from normal tissues, allowing for in vivo tracking of intravenously administered CAR T cells. Normal-organ dose estimates were favorable for repeated PET/CT studies. Selective T cell ablation in vivo with 177Lu-AABD seems feasible for clustered T-cell populations. Conclusion: We have demonstrated for the first time that T cells can be modified with DAbR1, enabling their in vivo tracking via PET and SPECT. The favorable biodistribution and high image contrast observed warrant further studies of this new reporter gene.


Asunto(s)
Rastreo Celular/métodos , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Genes Reporteros , Compuestos Heterocíclicos con 1 Anillo , Humanos , Fragmentos de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/metabolismo , Inmunoterapia Adoptiva , Lutecio , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Dosis de Radiación , Radioisótopos , Radiofármacos/química , Radiofármacos/farmacocinética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Linfocitos T/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Itrio
9.
Bioconjug Chem ; 29(4): 1319-1326, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29466853

RESUMEN

Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64Cu (or 67Ga for in vitro studies) in the presence of CH3COONH4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/µmol for 64Cu and >5.0 GBq/µmol for 67Ga. Both 64Cu- and 67Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [64Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [64Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [64Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.


Asunto(s)
Radioisótopos de Cobre/química , Radioisótopos de Galio/química , Compuestos Heterocíclicos/química , Neoplasias/diagnóstico por imagen , Antagonistas del Receptor de Neuroquinina-1/química , Receptores de Neuroquinina-1/análisis , Animales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos con 1 Anillo , Masculino , Ratones Desnudos , Antagonistas del Receptor de Neuroquinina-1/síntesis química , Tomografía de Emisión de Positrones/métodos
10.
Methods Mol Biol ; 1489: 543-556, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27734405

RESUMEN

The retina is a complex neurovascular structure that conveys light/visual image through the optic nerve to the visual cortex of the brain. Neuronal and vascular activities in the retina are physically and functionally intertwined, and vascular alterations are consequential to the proper function of the entire visual system. In particular, alteration of the structure and barrier function of the retinal vasculature is commonly associated with the development of vasoproliferative ischemic retinopathy, a set of clinically well-defined chronic ocular microvascular complications causing blindness in all age groups. Experimentally, the retinal tissue provides researchers with a convenient, easily accessible, and directly observable model suitable to investigate whether and how newly identified genes regulate vascular development and regeneration. The six mammalian CCN gene-encoded proteins are part of an extracellular network of bioactive molecules that regulate various aspects of organ system development and diseases. Whether and how these molecules regulate the fundamental aspects of blood vessel development and pathology and subsequently the neurovascular link in the retina are open-ended questions. Sophisticated methods have been developed to gain insight into the pathogenesis of retinal vasculopathy. This chapter describes several useful methodologies and animal models to investigate the regulation and potential relevance of the CCN proteins in vasoproliferative diseases of the retina.


Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Expresión Génica , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Animales , Animales Modificados Genéticamente , Cromosomas Artificiales Bacterianos , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Orden Génico , Marcación de Gen , Genes Reporteros , Vectores Genéticos , Inmunohistoquímica , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Neovascularización Retiniana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...