Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 263: 122155, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39088881

RESUMEN

With widespread occurrence and increasing concern of emerging contaminants (CECs) in source water, biologically active filters (BAF) have been gaining acceptance in water treatment. Both BAFs and graphene oxide (GO) have been shown to be effective in treating CECs. However, studies to date have not addressed interactions between GO and microbial communities in water treatment processes such as BAFs. Therefore, in the present study, we investigated the effect of GO on the properties and microbial growth rate in a BAF system. Synthesized GO was characterized with a number of tools, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectrometry. GO exhibited the characteristic surface functional groups (i.e., C-OH, C=O, C-O-C, and COOH), crystalline structure, and sheet-like morphology. To address the potential toxicity of GO on the microbial community, reactive oxygen species (ROS) generation was measured using nitro blue tetrazolium (NBT) assay. Results revealed that during the exponential growth phase, ROS generation was not observed in the presence of GO compared to the control batch. In fact, the adenosine triphosphate (ATP) concentrations increased in the presence of GO (25 µg/L - 1000 µg/L) compared to the control without GO. The growth rate in systems with GO exceeded the control by 20 % to 46 %. SEM images showed that GO sheets can form an effective scaffold to promote bacterial adhesion, proliferation, and biofilm formation, demonstrating its biocompatibility. Next-generation sequencing (Illumina MiSeq) was used to characterize the BAF microbial community, and high-throughput sequencing analysis confirmed the greater richness and more diverse microbial communities compared to systems without GO. This study is the first to report the effect of GO on the microbial community of BAF from a water treatment plant, which provides new insights into the potential of utilizing a bio-optimized BAF for advanced and sustainable water treatment or reuse strategies.

2.
Heliyon ; 10(9): e30332, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707387

RESUMEN

Cronobacter sakazakii is an opportunistic pathogen that has been associated with severe infection in neonates such as necrotizing enterocolitis (NEC), neonatal meningitis, and bacteremia. This pathogen can survive in a relatively dry environment, especially in powdered infant formula (PIF). Unfortunately, conventional drugs that were once effective against C. sakazakii are gradually losing their efficacy due to rising antibiotic resistance. In this study, a subtractive genomic approach was followed in order to identify potential therapeutic targets in the pathogen. The whole proteome of the pathogen was filtered through a step-by-step process, which involved removing paralogous proteins, human homologs, sequences that are less essential for survival, proteins with shared metabolic pathways, and proteins that are located in cells other than the cytoplasmic membrane. As a result, nine novel drug targets were identified. Further, the analysis also unveiled that the FDA-approved drug Terbinafine can be repurposed against the Glutathione/l-cysteine transport system ATP-binding/permease protein CydC of C. sakazakii. Moreover, molecular docking and dynamics studies of Terbinafine and CydC suggested that this drug can be used to treat C. sakazakii infection in neonates. However, for clinical purposes further in vitro and in vivo studies are necessary.

3.
Comput Biol Med ; 158: 106855, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37040675

RESUMEN

The molecular mechanism of the pathological impact of COVID-19 in lung cancer patients remains poorly understood to date. In this study, we used differential gene expression pattern analysis to try to figure out the possible disease mechanism of COVID-19 and its associated risk factors in patients with the two most common types of non-small-cell lung cancer, namely, lung adenocarcinoma and lung squamous cell carcinoma. We also used network-based approaches to identify potential diagnostic and molecular targets for COVID-19-infected lung cancer patients. Our study showed that lung cancer and COVID-19 patients share 36 genes that are expressed differently and in common. Most of these genes are expressed in lung tissues and are mostly involved in the pathogenesis of different respiratory tract diseases. Additionally, we also found that COVID-19 may affect the expression of several cancer-associated genes in lung cancer patients, such as the oncogenes JUN, TNC, and POU2AF1. Moreover, our findings suggest that COVID-19 may predispose lung cancer patients to other diseases like acute liver failure and respiratory distress syndrome. Additionally, our findings, in concert with published literature, suggest that molecular signatures, such as hsa-mir-93-5p, CCNB2, IRF1, CD163, and different immune cell-based approaches could help both diagnose and treat this group of patients. Altogether, the scientific findings of this study will help formulate appropriate management measures and guide the development of diagnostic and therapeutic measures for COVID-19-infected lung cancer patients.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroARNs , Neumonía , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , COVID-19/genética , MicroARNs/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/genética , Factores de Riesgo , Regulación Neoplásica de la Expresión Génica/genética , Pulmón
4.
Comput Math Methods Med ; 2022: 2872940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799638

RESUMEN

The unsteady magneto-convective heat-mass transport passing in a vertical porous sheet with the thermal radiation and the chemical reaction effects has been examined numerically. The governing PDEs have been transferred into ODEs by applying the local similarity transformation. The nondimensional governing equations including the boundary conditions are solved by applying the superposition method with the help of the "MATLAB ODE45" software numerically. The influence of emerging nondimensional numbers/parameters, for example, the Prandtl number (Pr), thermal radiation parameter (R), Schmidt number (Sc), and chemical reaction parameter (K r), on fluid velocity, concentration, and thermal radiation within the boundary layer has been examined. The outcomes indicate that enhancing values of the Soret and Dufour numbers reduce the thermal boundary layer thickness. Uplifting values of the thermal radiation (0.5-3.5) enhance the local skin friction coefficient and mass transfer rate by approximately 15% and 78% but decrease the heat transfer rate by 47%. The local skin friction coefficient enhances about 21%, and the mass transfer rate reduces about 64% due to an increase in the chemical reaction parameter (0.5-2.0). Finally, we compared our numerical results with previously published literature and observed them to have a good agreement.


Asunto(s)
Calor , Fricción , Humanos , Porosidad
5.
J Adv Vet Anim Res ; 8(4): 557-562, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35106294

RESUMEN

OBJECTIVE: Duck virus enteritis is a severe viral disease that kills ducks and swans worldwide. The clinical manifestations, gross pathology, molecular detection, and characterization of the duck virus enteritis virus (DVEV) in Australian black swans at a safari park in Bangladesh were described in this case report. MATERIALS AND METHODS: On a safari park in Bangladesh, an Australian black swan flock exhibited clinical signs of anorexia, greenish watery diarrhea, increased thirst, partial paralysis, and death. Postmortem examinations of deceased swans revealed extensive pathological abnormalities in the trachea, liver, and spleen. To isolate DVEV, a viral inoculum produced from the liver and spleen of dead swans was implanted into 9-13-day-old embryonated duck eggs via the chorioallantoic membrane (CAM) route. DVEV was confirmed using a polymerase chain reaction (PCR) assay. Phylogenetic analysis was used to determine the genetic relationship between the DVEV isolates from Australian black swans, and 16 DVEV isolates previously described in the GenBank. RESULTS: Hemorrhage was noted in the annular ring of the trachea, as well as an enlarged and hemorrhagic liver and spleen. The PCR assay amplified a 446-bp fragment of the DVEV DNA polymerase gene in the liver, spleen, and CAM homogenates. The phylogenetic analysis found that the DVEV isolates from swans were comparable to those from Bangladesh, India, Vietnam, China, Germany, the USA, and Egypt. CONCLUSION: According to the findings of this study, the DVEV was the cause of illness and mortality in an Australian black swan flock.

6.
J Hazard Mater ; 400: 123253, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947746

RESUMEN

In this study, the influence of biofilm presence and water chemistry conditions on lead (Pb) deposition onto low density polyethylene (LDPE) surface was examined. The results demonstrated that biofilm presence on LDPE surfaces strongly and significantly enhanced Pb uptake, with the 13-fold greater equilibrium Pb surface loading when biofilm was present (1602 µg/m2) compared to the condition when it was absent (124 µg/m2). The kinetics of Pb adsorption onto LDPE surface when biofilm was present is best described by Pseudo 2nd order kinetic model. Pb adsorption onto new LDPE surfaces was significantly reduced from 1101 µg/m2 to 134 µg/m2 with increased aqueous solution's ionic strength from 3 × 10-6 M to 0.0072 M. The presence of chlorine residual (2 mg/L) significantly reduced Pb adsorption onto LDPE surfaces by possible oxidation of Pb2+ to Pb4+ species. The kinetics of Pb release from LDPE surfaces was investigated under static and dynamic conditions through immediate exposure of Pb accumulated LDPE pellets to the synthetic water at pH 5.0 and 7.8. The results demonstrated a greater Pb release (86 %) at pH 5.0 compared to the pH 7.8 (58 %). An enhanced Pb release into the contact water was found under dynamic conditions compared to static conditions.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Adsorción , Biopelículas , Concentración de Iones de Hidrógeno , Cinética , Plomo , Polietileno , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA