Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Curr Pain Headache Rep ; 28(3): 119-124, 2024 Mar.
Article En | MEDLINE | ID: mdl-38079074

PURPOSE OF REVIEW: To review the evidence and role of monosodium glutamate (MSG) as a headache and migraine trigger. RECENT FINDINGS: MSG is a common food additive, has widely been linked as a trigger of headache, as well as other symptoms. However, the evidence for MSG as a causative agent for headache is debated. Various clinical trials over the past several decades have reported conflicting results, with studies suggesting that MSG does and does not increase the incidence of headache. However, the dosages of MSG exposure are often inconsistent across studies, with many studies administering a dose significantly higher than the average consumption.. Additionally, there are misconceptions about which foods and cuisines have MSG in them. MSG could be a potential trigger for migraine and headaches. It is unclear exactly how MSG plays into the migraine pathophysiology. It's crucial to accurately determine if MSG is present in one's diet to evaluate its potential impact on headaches.


Migraine Disorders , Sodium Glutamate , Humans , Sodium Glutamate/toxicity , Headache/chemically induced , Food Additives , Food
2.
Front Neurol ; 8: 330, 2017.
Article En | MEDLINE | ID: mdl-28769866

It is widely accepted that cerebral pathology can impair ocular motor and manual motor control. This is true in indolent and chronic processes, such as neurodegeneration and in acute processes such as stroke or those secondary to neurotrauma. More recently, it has been suggested that disruptions in these control systems are useful markers for prognostication and longitudinal monitoring. The utility of examining the relationship or the coupling between these systems has yet to be determined. We measured eye and hand-movement control in chronic, middle cerebral artery stroke, relative to healthy controls, in saccade-to-reach paradigms to assess eye-hand coordination. Primary saccades were initiated significantly earlier by stroke participants relative to control participants. However, despite these extremely early initial saccades to the target, reaches were nevertheless initiated at approximately the same time as those of control participants. Control participants minimized the time period between primary saccade onset and reach initiation, demonstrating temporal coupling between eye and hand. In about 90% of all trials, control participants produced no secondary, or corrective, saccades, instead maintaining fixation in the terminal position of the primary saccade until the end of the reach. In contrast, participants with stroke increased the time period between primary saccade onset and reach initiation. During this temporal decoupling, multiple saccades were produced in about 50% of the trials with stroke participants making between one and five additional saccades. Reaches made by participants with stroke were both longer in duration and less accurate. In addition to these increases in spatial reach errors, there were significant increases in saccade endpoint errors. Overall, the magnitude of the endpoint errors for reaches and saccades were correlated across participants. These findings suggest that in individuals with otherwise intact visual function, the spatial and temporal relationships between the eye and hand are disrupted poststroke, and may need to be specifically targeted during neurorehabilitation. Eye-hand coupling may be a useful biomarker in individuals with cerebral pathology in the setting of neurovascular, neurotraumatic, and neurodegenerative pathology.

3.
Front Neurol ; 8: 227, 2017.
Article En | MEDLINE | ID: mdl-28620341

Acute and chronic disease processes that lead to cerebral injury can often be clinically challenging diagnostically, prognostically, and therapeutically. Neurodegenerative processes are one such elusive diagnostic group, given their often diffuse and indolent nature, creating difficulties in pinpointing specific structural abnormalities that relate to functional limitations. A number of studies in recent years have focused on eye-hand coordination (EHC) in the setting of acquired brain injury (ABI), highlighting the important set of interconnected functions of the eye and hand and their relevance in neurological conditions. These experiments, which have concentrated on focal lesion-based models, have significantly improved our understanding of neurophysiology and underscored the sensitivity of biomarkers in acute and chronic neurological disease processes, especially when such biomarkers are combined synergistically. To better understand EHC and its connection with ABI, there is a need to clarify its definition and to delineate its neuroanatomical and computational underpinnings. Successful EHC relies on the complex feedback- and prediction-mediated relationship between the visual, ocular motor, and manual motor systems and takes advantage of finely orchestrated synergies between these systems in both the spatial and temporal domains. Interactions of this type are representative of functional sensorimotor control, and their disruption constitutes one of the most frequent deficits secondary to brain injury. The present review describes the visually mediated planning and control of eye movements, hand movements, and their coordination, with a particular focus on deficits that occur following neurovascular, neurotraumatic, and neurodegenerative conditions. Following this review, we also discuss potential future research directions, highlighting objective EHC as a sensitive biomarker complement within acute and chronic neurological disease processes.

...