Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mamm Genome ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075281

RESUMEN

Camels, known as the "Ship of the Desert," play a vital role in the ecosystems and economies of arid and semi-arid regions. They provide meat, milk, transportation, and other essential services, and their resilience to harsh environments makes them invaluable. Despite their similarities, camel breeds exhibit notable differences in size, color, and structure, with over 40 million camels worldwide. This number is projected to increase, underscoring their growing significance. Economically, camels are crucial for food production, tourism, and trade, with camel racing being particularly significant in Arab countries. Their unique physiological traits, such as low disease susceptibility and efficient water conservation, further enhance their value. Camel products, especially meat and milk, offer substantial nutritional and therapeutic benefits, contributing to their high demand. Genetic diversity studies have advanced our understanding of camels' adaptation to extreme environments. Functional genomics and whole-genome sequencing have identified genes responsible for these adaptations, aiding breeding programs and conservation efforts. High-throughput sequencing has revealed genetic markers linked to traits like milk production and disease resistance. The development of SNP chips has revolutionized genetic studies by providing a cost-effective alternative to whole-genome sequencing. These tools facilitate large-scale genotyping, essential for conserving genetic diversity and improving breeding strategies. To prevent the depletion of camel genetic diversity, it is crucial to streamline in situ and ex situ conservation efforts to maintain their ecological and economic value. A comprehensive approach to camel conservation and genetic preservation, involving advanced genomic technologies, reproductive biotechniques, and sustainable management practices, will ensure their continued contribution to human societies.

2.
Gene ; 928: 148787, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053660

RESUMEN

The yak (Bos grunniens), renowned for its adaptability to extreme cold and hypoxic conditions, stands as a remarkable domestic animal crucial for sustaining livelihoods in harsh climates. We conducted a comprehensive analysis of the whole genome sequence data from three distinct Indian yak populations: Arunachali yak (n = 10), Himachali yak (n = 10), and Ladakhi yak (n = 10). The genomic data for Indian yaks were meticulously generated by our laboratory and compared with their Chinese counterpart, the Jinchuan yak (n = 8), for a more nuanced understanding. Our investigation revealed a total of 37,437 runs of homozygosity (ROH) segments in 34 animals representing four distinct yak populations. The Jinchuan yak population exhibited the highest proportion, constituting 80.8 % of total ROHs, predominantly as small segments (<0.1 Mb), accounting for 63 % of the overall ROHs. Further analysis uncovered a significantly higher degree of inbreeding in Chinese yaks compared to their Indian counterparts. The Indian yak populations, in contrast, demonstrated relatively lower and consistent levels of inbreeding. Moreover, we identified ROH hotspots that covered at least 60 % of individuals in our study, indicating their pivotal role in environmental adaptation. A total of five hotspot regions were detected, housing genes such as ENSBGRG00000015023 (WNT2), YIPF4, SPAST, TLN2, and DSG4. These genes are associated with traits including hair follicle initiation, nutrient stress response, microtubule assembly, development of cardiac muscle, hair follicle, and coat color. This observation strongly suggests that there is substantial selection acting on these genes, emphasizing their important role in environmental adaptation among yak populations.

3.
Mamm Genome ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888811

RESUMEN

This study explored the genetic diversity and evolutionary history of riverine and swamp buffaloes in India, utilizing complete mitochondrial genome sequences. Through comprehensive sampling across varied agro-climatic zones, including 91 riverine buffaloes from 12 breeds and 6 non-descript populations, along with 16 swamp buffaloes of the Luit breed, this study employed next-generation sequencing techniques to map the mitogenomic landscape of these subspecies. Sequence alignments were performed with the buffalo mitochondrial reference genome to identify mitochondrial DNA (mtDNA) variations and distinct maternal haplogroups among Indian buffaloes. The results uncovered the existence of 212 variable sites in riverine buffaloes, yielding 67 haplotypes with high haplotype diversity (0.991), and in swamp buffaloes, 194 variable sites resulting in 12 haplotypes, displaying haplotype diversity of 0.950. Phylogenetic analyses elucidated the genetic relationships between Indian buffaloes and the recognized global haplogroups, categorizing Indian swamp buffaloes predominantly into the SA haplogroup. Intriguingly, the haplogroup SB2b was observed for the first time in swamp buffaloes. Conversely, riverine buffaloes conformed to established sub-haplogroups RB1, RB2, and RB3, underscoring the notion of Northwestern India as a pivotal domestication site for riverine buffaloes. The study supports the hypothesis of independent domestication events for riverine and swamp buffaloes, highlighting the critical role of genetic analysis in unraveling the complex evolutionary pathways of domestic animals. This investigation contributes to the global understanding of buffalo mitogenome diversity, offering insights into this important livestock species' domestication and dispersal patterns.

4.
Sci Rep ; 14(1): 9994, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693269

RESUMEN

The ever-growing threats in cybersecurity growing with the rapid development of quantum computing, necessitates the development of robust and quantum-resistant cryptographic systems. This paper introduces a novel cryptosystem, Public Key Cryptosystem based on Systematic Polar Encoding (PKC-SPE), based on the combination of systematic polar encoding and public-key cryptographic principles. The Systematic Polar Encoding (SPE), derived from the well-established field of polar codes, serves as the foundation for this proposed cryptographic scheme. Here, we have used MATLAB Software to introduce and implement the PKC-SPE Cryptosystem. The paper examines key generation, encryption, and decryption algorithms, providing insights into the adaptability and efficiency of systematic polar encoding in public-key cryptography. We assess the efficiency of the PKC-SPE Cryptosystem in three aspects: key size, computational complexity, and system implementation timings. In addition, we compare the PKC-SPE Cryptosystem with PKC-PC cryptosystem and find that it has reduced key sizes ( P r = 0.8436 kbytes). The results obtained through simulations validate the effectiveness of the proposed cryptosystem and highlighting its potential for integration into real-world communication systems. Thus, in the paradigm shift to quantum computing, the PKC-SPE cryptosystem emerges as a promising candidate to secure digital communication in the quantum computing era.

5.
Int J Biometeorol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814475

RESUMEN

The current study attempts to investigate the differences in gene expression in longissimus thoracis muscles between sheep breeds acclimated to diverse environments. Changthangi sheep inhabits the cold arid plateau of Ladakh, at an altitude above 3000 m with prevalence of rarefied atmosphere. Muzzafarnagri sheep, on the other hand is found in the sub-tropical hot and humid plains at an altitude of about 250 m. Comparative transcriptomics was used to provide a molecular perspective of the differential adaptation of the two breeds. RNA sequencing data was generated from four biological replicates of the longissimus thoracis muscles from both breeds. The common genes expressed in both breeds were involved in muscle contraction and muscle fibre organization. The most significant pathways enriched in Changthangi muscles were glycogen metabolism, reduction of cytosolic Ca++ levels and NFE2L2 regulating anti-oxidant, while those in Muzzafarnagri were extracellular matrix organization and collagen formation. The hub genes identified in Changthangi were involved in hematopoiesis and HIF signaling pathway, suggesting the molecular acclimatization of Changthangi to the high altitude cold desert of Ladakh. The nodal genes discovered in Muzzafarnagri sheep were associated with the extracellular matrix which accentuates its significance in the development, growth and repair of muscles. The observed transcriptomic differences underscore the morphological and adaptive disparity between the two breeds. The candidate genes and pathways identified in this study will form the basis for future research on adaptation to high altitude and body size in small ruminants.

6.
Gene ; 921: 148541, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38723784

RESUMEN

Camels play a crucial socio-economic role in sustaining the livelihoods of millions in arid and semi-arid regions. They possess remarkable physiological attributes which enable them to thrive in extreme environments, and provide a source of meat, milk and transportation. With their unique traits, camels embody an irreplaceable source of untapped genomic knowledge. This study introduces Axiom-MaruPri, a medium-density SNP chip meticulously designed and validated for both Camelus bactrianus and Camelus dromedarius. Comprising of 182,122 SNP markers, derived from the re-sequenced data of nine Indian dromedary breeds and the double-humped Bactrian camel, this SNP chip offers 34,894 markers that display polymorphism in both species. It achieves an estimated inter-marker distance of 14 Kb, significantly enhancing the coverage of the camel genome. The medium-density chip has been successfully genotyped using 480 camel samples, achieving an impressive 99 % call rate, with 96 % of the 182,122 SNPs being highly reliable for genotyping. Phylogenetic analysis and Discriminant Analysis of Principal Components yield clear distinctions between Bactrian camels and dromedaries. Moreover, the discriminant functions substantially enhance the classification of dromedary camels into different breeds. The clustering of various camel breeds reveals an apparent correlation between geographical and genetic distances. The results affirm the efficacy of this SNP array, demonstrating high genotyping precision and clear differentiation between Bactrian and dromedary camels. With an enhanced genome coverage, accuracy and economic efficiency the Axiom_MaruPri SNP chip is poised to advance genomic breeding research in camels. It holds the potential to serve as an invaluable genetic resource for investigating population structure, genome-wide association studies and implementing genomic selection in domesticated camelid species.


Asunto(s)
Camelus , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Animales , Camelus/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Filogenia , Domesticación , Cruzamiento/métodos , Genotipo , Técnicas de Genotipaje/métodos
7.
Mamm Genome ; 35(2): 160-169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589518

RESUMEN

Ladakh, one of the highest inhabited regions globally, hosts the unique Changthangi goat, renowned for producing Pashmina, the world's most luxurious natural fiber. In comparison, the fiber derived from Changthangi sheep is considered next only to Pashmina. This research endeavors to compare the skin transcriptome profiles of Changthangi goats and Changthangi sheep, aiming to discern the molecular determinants behind the recognition of Changthangi goats as the source of Pashmina. Drawing upon previously conducted studies, a collective of 225 genes correlated with fiber characteristics were extracted from the differentially expressed genes noticed between the two species (p-value of ≤ 0.05 and a log2 fold change of ≥ 1.5). These genes were analyzed using DAVID software to understand their biological functions and to identify enriched KEGG and Reactome pathways. The protein-protein interaction networks were constructed using Cytoscape, cytoHubba, and STRING to focus on key genes and infer their biological significance. Comparative transcriptome analysis revealed significantly higher expression of genes involved in signaling pathways like Wnt, MAPK, PI3K-Akt, Hedgehog, associated with fiber development and quality in Changthangi goats. These pathways play crucial roles in hair follicle (HF) formation, maintenance of epidermal stem cells, and fiber characteristics. Findings also highlight the enrichment of cell adhesion molecules and ECM-receptor interaction, emphasizing their roles in HF structure, growth, and signaling. This investigation offers an in-depth understanding of the molecular intricacies governing Pashmina production in Changthangi goats, providing valuable insights into their unique genetic makeup and underlying mechanisms influencing the exceptional quality of Pashmina fibers.


Asunto(s)
Perfilación de la Expresión Génica , Cabras , Piel , Transcriptoma , Animales , Cabras/genética , Cabras/metabolismo , Piel/metabolismo , Ovinos/genética , Ovinos/metabolismo , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Lana/metabolismo , Fibra de Lana
8.
Mol Biol Rep ; 51(1): 268, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302649

RESUMEN

BACKGROUND: Quantitative real-time PCR (qPCR) is a highly reliable method for validating gene expression data in molecular studies due to its sensitivity, specificity, and efficiency. To ensure accurate qPCR results, it's essential to normalize the expression data using stable reference genes. METHODS: This study aimed to identify suitable reference genes for qPCR studies in goats by evaluating 18 candidate reference genes (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) in 10 different caprine tissues (heart, intestine, kidney, liver, lung, muscle, rumen, skin, spleen, and testis). An integrated tool called RefFinder, which incorporates various algorithms like NormFinder, GeNorm, BestKeeper, and ΔCt, was used to assess the stability of expression among these genes. RESULTS: After thorough analysis, ACTB, PPIB, and B2M emerged as the most stable reference genes, while RPL19, RPS15, and RPS9 were found to be the least stable. The suitability of the selected internal control genes was further validated through target gene analysis, confirming their efficacy in ensuring accurate gene expression profiling in goats. CONCLUSION: The study determined that the geometric average of ACTB, PPIB, and B2M creates an appropriate normalization factor for gene expression studies in goat tissues.


Asunto(s)
Perfilación de la Expresión Génica , Cabras , Masculino , Animales , Cabras/genética , Cabras/metabolismo , Perfilación de la Expresión Génica/métodos , Algoritmos , Corazón , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
9.
Gene ; 897: 148067, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092161

RESUMEN

Quantitative PCR (qPCR) is a widely-used technique for quantifying the expression of target genes across various tissues, as well as under different pathological and physiological conditions. One of the challenges associated with this method is the need to identify optimal reference genes (RGs) that maintain consistent expression levels under diverse experimental settings, thereby ensuring accurate biological interpretation. In this study, we conducted a thorough analysis of 18 candidate RGs (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) across 10 ovine tissues (muscle, skin, kidney, liver, intestine, rumen, lung, testis, heart, and spleen) obtained from five individual sheep. We aimed to identify genes with stable expression across these tissues. A literature-based survey helped us shortlist candidate genes representing various functional classes from multiple livestock species. We employed four algorithms: geNorm, NormFinder, BestKeeper, and Delta Ct (ΔCt), to rank these genes based on their stability. A consistent trend in the rankings was observed across these different algorithms. RefFinder was then used for a comprehensive ranking, integrating the outputs from the various methods. ACTB, PPIB, BACH1, and B2M emerged as the most stable RGs, while RPS9, RPS15, and PGK1 displayed variable expression. We validated our findings through qPCR analysis of four target genes (ACTN2, CRYAB, DLK1, and TRIM54) in the skin samples from two different sheep breeds. Based on these results, we recommend ACTB, PPIB, BACH1, and B2M as reliable internal control genes for qPCR experiments involving diverse ovine tissues.


Asunto(s)
Algoritmos , Gliceraldehído-3-Fosfato Deshidrogenasas , Masculino , Animales , Ovinos/genética , Corazón , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Testículo , Perfilación de la Expresión Génica/métodos , Estándares de Referencia
10.
Anim Biotechnol ; 35(1): 2282723, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38006247

RESUMEN

The present study aims to identify genomic variants through a whole genome sequencing (WGS) approach and uncover biological pathways associated with adaptation and fitness in Indian yak populations. A total of 30 samples (10 from each population) were included from Arunachali, Himachali and Ladakhi yak populations. WGS analysis revealed a total of 32171644, 27260825, and 32632460 SNPs and 4865254, 4429941, and 4847513 Indels in the Arunachali, Himachali, and Ladakhi yaks, respectively. Genes such as RYR2, SYNE2, BOLA, HF1, and the novel transcript ENSBGRG00000011079 were found to have the maximum number of high impact variants in all three yak populations, and might play a major role in local adaptation. Functional enrichment analysis of genes harboring high impact SNPs revealed overrepresented pathways related to response to stress, immune system regulation, and high-altitude adaptation. This study provides comprehensive information about genomic variants and their annotation in Indian yak populations, thus would serve as a data resource for researchers working on the yaks. Furthermore, it could be well exploited for better yak conservation strategies by estimating population genetics parameters viz., effective population size, inbreeding, and observed and expected heterozygosity.


Asunto(s)
Genética de Población , Genoma , Animales , Bovinos/genética , Genoma/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma/veterinaria , Genómica
11.
Anim Biotechnol ; 34(9): 5173-5179, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847106

RESUMEN

This study explored the maternal genetic diversity in the pig genetic resources of India by analyzing a mitochondrial D-loop fragment and comparing it with the corresponding sequences of previously published studies involving domestic pigs and wild boars. Sequencing of 103 samples representing different domestic pig populations revealed existence of 32 maternal haplotypes. The indices of haplotype and nucleotide diversity in Indian domestic pigs were 0.9421 and 0.015, respectively. Median-Joining network revealed that Indian pigs belong to Clade A and show conformity to 6 haplogroups reported worldwide (D1a, D1a1, D1a2, D1e, D1h and D3a). Among these, D1e and D1a2 were shared with Asian wild boars too. Interestingly, haplotype sharing was evident between Indian pigs and samples from other countries representing Africa, Asia, Europe and Oceania. This study substantiates India's contribution as a possible pig domestication center and highlights the importance of the Indian subcontinent in dispersal of the species to other continents. Additionally, genetic evidence suggested the influence of trading routes and historical interactions in shaping pig genetic exchange. Overall, this investigation provides valuable insights into the genetic diversity, historical migration, and domestication of Indian domestic pigs, contributing to the broader understanding of global pig genetic resources and their evolutionary history.


Asunto(s)
Domesticación , Sus scrofa , Porcinos/genética , Animales , Sus scrofa/genética , India , Mitocondrias/genética , Haplotipos/genética , Filogenia , Variación Genética/genética , ADN Mitocondrial/genética
12.
Genes (Basel) ; 14(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37761803

RESUMEN

The molecular changes occurring in the host in response to in vivo Theileria annulata parasitic infection are not well understood. Therefore, the present study investigated the differential expression profiles of peripheral blood mononuclear cells (PBMCs) across Theileria annulata-infected and non-infected crossbred cows. The differential expression profiles from PBMCs of infected and non-infected crossbred cows were generated by RNA sequencing. A marked difference in the expression of genes associated with innate immunity (FTH1, ACTB, ISG15) was observed between the two groups. The over-represented pathways in Theileria annulata-infected cows were associated with the immune system and regulation of the mitotic cycle. Enriched genes and pathways in non-infected animals were associated with the maintenance of chromatin integrity and cell structure. The highly connected genes identified in this study form potential candidates for further investigation into host-parasite interactions in cattle. An improved understanding of the transcriptomic dynamics during theileriosis would lead to underpinning molecular level differences related to the health status of cattle.

13.
Gene ; 885: 147691, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544337

RESUMEN

Goats are the supporting pillars of rural economy contributing significantly to meat and milk production in India. It is a species targeted for fulfilling the interdependent goals of poverty reduction and creation of employment for supporting the rural income. The increased demand for goat products necessitates their genetic characterization and improvement to augment the production of native breeds. Bi-allelic, genome wide, densely placed single nucleotide polymorphism (SNP) markers are most suitable for this purpose. This paper describes the design and validation of an Affymetrix Axiom-based high-density (HD) SNP chip for goats. The array was designed using a panel of 225 samples from 15 diverse goat breeds of India. In total, more than 38 million high quality SNPs were subjected to stringent filtering and 626,975 SNPs were finally tiled on the array. The average coverage of SNPs in our chip is one SNP per four kilobase (kb), providing a denser coverage of the goat genome than previously available arrays. The HD chip (Axiom_Cahi) was validated by genotyping 443 samples from 26 indigenous goat breeds/populations. The results revealed 95.83% markers to be highly informative and polymorphic in Indian goats. Multivariate analysis indicated population structuring, as 15 breeds could be segregated using the designed array. Phylogenetic analysis suggested stratification of breeds by geographic proximity. This HD SNP chip for goats is a valuable resource for genomic selection, genome wide association as well as population genetic studies in goats.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Animales , Filogenia , Cabras/genética , Genómica , Genoma , Polimorfismo de Nucleótido Simple
14.
Foods ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444172

RESUMEN

Backyard poultry farming contributes to food security, nutrition, and the regular income of rural farmers in India. Their products have a niche market here and fetch higher prices than those of commercial poultry. Improved varieties are being developed to overcome the slow growth, late sexual maturity, and low production of indigenous breeds, while retaining their positive attributes. A comprehensive study was conducted to analyze the functional attributes of meat from the Jabalpur color (JBC), a colored, improved dual-purpose synthetic line, developed by Nanaji Deshmukh Veterinary Science University, Jabalpur, India. The birds were managed in a deep litter system under a backyard type of housing (night shelter and free range). Primal meat cuts (breast and thigh) of the male birds (n = 20/group) were evaluated at the age of marketing. The corresponding attributes were compared with the results obtained for commercial Cobb (400) broilers. The protein concentration of JBC breast (25.65 ± 0.39 g/100 g of tissue) and thigh (19.04 ± 0.23 g/100 g of tissue) meat was superior (p ≤ 0.05) to that of Cobb broilers. Established assays (in vitro) identified a better (p ≤ 0.05) antioxidation capacity in the JBC meat. High-performance liquid chromatography confirmed a considerable quantity of functional biomolecules (carnosine, anserine, and creatine) in the JBC breast and thigh meat extracts. The average carnosine concentration (mg/g of tissue) was 2.66 ± 0.09 and 1.11 ± 0.04 in the JBC breast and thigh meat, respectively. The mRNA expression was quantified by qRT-PCR for the carnosine-related genes: ß-alanine transporter (SLC36A1), carnosine-synthesizing enzyme (CARNS1), and carnosine-degrading enzyme (CNDP2); this explained the comparable carnosine in the JBC and Cobb meat. Meat extracts from both genetic groups (JBC and Cobb) had high anti-glycation potential. Higher protein content and antioxidant capacity, along with the bioactive dipeptides in the JBC meat, herald exciting research opportunities for its use in improving the traditional backyard poultry farming system.

15.
Gene ; 880: 147627, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37429369

RESUMEN

To contribute to the knowledge of maternal genetic diversity in domestic donkeys, this study investigated the mitochondrial DNA variations and analyzed the genetic structure in Indian donkeys based on 31 mitogenome sequences representing four breeds/populations (Agra, Halari, Kachchhi and Spiti). A total of 27 haplotypes with a haplotype diversity value of 0.989 were evident in the donkey genetic resources of India. The genetic differentiation between the investigated populations was evaluated using population pairwise FST values, which showed maximum differentiation between Kachchhi and Halari donkeys. The Neighbor-Joining (NJ) tree based on the whole mitogenome sequence and the Median-Joining (MJ) network for partial D-loop fragment showed clear demarcation of Indian donkeys into Nubian and Somali clades, substantiating African maternal origin of Indian domestic donkeys. The topology of the MJ network excluded the Asian wild asses as the possible progenitors of Indian donkeys. Halari and Agra donkeys showed conformity exclusively to the Nubian lineage of the African wild asses. However, representation of both the Nubian and Somali lineages was observed in Kachchhi and Spiti donkeys. Comprehensive analysis carried out by retrieving D-loop sequences from different countries representing Asia, Africa, Europe and South America revealed existence of shared haplotypes across geographically isolated regions of the globe. This observation is indicative of utility of donkeys as pack animals across inter-continental trading routes during development of human civilizations. Our results represent a valuable contribution to maternal genetic diversity of Indian donkeys and provide insights into the worldwide spread of the species following initial domestication in Africa.


Asunto(s)
ADN Mitocondrial , Equidae , Animales , Humanos , Equidae/genética , Filogenia , ADN Mitocondrial/genética , África , Domesticación , Haplotipos , Variación Genética
16.
3 Biotech ; 13(7): 253, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396468

RESUMEN

RNA sequencing-based expression profiles from pectoralis major muscles of black meat (Kadaknath) and white meat (broiler) chicken were compared to identify differentially expressed genes. A total of 156 genes with log2 fold change ≥ ± 2.0 showed higher expression in Kadaknath and 68 genes were expressed at a lower level in comparison to broiler. Significantly enriched biological functions of up-regulated genes in Kadaknath were skeletal muscle cell differentiation, regulation of response to reactive oxygen, positive regulation of fat cell differentiation and melanosome. Significant ontology terms up-regulated in broiler included DNA replication origin binding, G-protein coupled receptor signaling pathway and chemokine activity. Highly inter-connected differentially expressed genes in Kadaknath (ATFs, C/EPDs) were observed to be important regulators of cellular adaptive functions, while in broiler, the hub genes were involved in cell cycle progression and DNA replication. The study is an attempt to get an insight into the transcript diversity of pectoralis major muscles of Kadaknath and broiler chicken. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03682-0.

17.
Anim Biotechnol ; 34(9): 4989-5000, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37288785

RESUMEN

In this study, comparative analysis of skeletal muscle transcriptome was carried out for four biological replicates of Aseel, a fighter type breed and Punjab Brown, a meat type breed of India. The profusely expressed genes in both breeds were related to muscle contraction and motor activity. Differential expression analysis identified 961 up-regulated and 979 down-regulated genes in Aseel at a threshold of log2 fold change ≥ ±2.0 (padj<0.05). Significantly enriched KEGG pathways in Aseel included metabolic pathways and oxidative phosphorylation, with higher expression of genes associated with fatty acid beta-oxidation, formation of ATP by chemiosmotic coupling, response to oxidative stress, and muscle contraction. The highly connected hub genes identified through gene network analysis in the Aseel gamecocks were HNF4A, APOA2, APOB, APOC3, AMBP, and ACOT13, which are primarily associated with energy generating metabolic pathways. The up-regulated genes in Punjab Brown chicken were found to be related to muscle growth and differentiation. There was enrichment of pathways such as focal adhesion, insulin signaling pathway and ECM receptor interaction in these birds. The results presented in this study help to improve our understanding of the molecular mechanisms associated with fighting ability and muscle growth in Aseel and Punjab Brown chicken, respectively.


Asunto(s)
Pollos , Transcriptoma , Animales , Transcriptoma/genética , Músculo Esquelético/metabolismo , Redes y Vías Metabólicas , India , Perfilación de la Expresión Génica/veterinaria
18.
Anim Biotechnol ; 34(9): 5016-5027, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300558

RESUMEN

Cattle are losing maximum breeds among the world's livestock. Genetic variability data is essentially required for conservation decision-making. Thutho is a recently registered Indian cattle breed (INDIA_CATTLE_1400_THUTHO_03047) from the northeast region (NE), a biodiversity hotspot. Genetic diversity in the Thutho population and its differentiation from the only other cattle breed of NE (Siri) and cattle (Bachaur) of the neighboring region was established using highly polymorphic, FAO-recommended microsatellite markers. Numerous alleles (253) were detected across the 25 loci. The mean observed and expected numbers of alleles in the population were 10.12 ± 0.5 and 4.5 ± 0.37, respectively. The observed heterozygosity (0.67 ± 0.04) was lower than the expected heterozygosity (0.73 ± 0.03) which indicated a departure from the Hardy-Weinberg equilibrium. A positive FIS value (0.097) confirmed the heterozygote deficiency in the Thutho population. Genetic distance, phylogenetic relationships, differentiation parameters, population assignment, and Bayesian analysis explicitly ascertained the unique genetic identity of the Thutho cattle. The population did not suffer any bottlenecks in the past. Thutho has minimum diversity among the three populations; hence, its scientific management needs to be initiated immediately. Interestingly, genetic variation is enough for formulating breeding programs for managing, improving, and conserving this precious indigenous cattle germplasm.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Bovinos/genética , Animales , Variación Genética/genética , Filogenia , Teorema de Bayes , Heterocigoto , Repeticiones de Microsatélite/genética , India , Alelos
19.
Gene ; 877: 147532, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279864

RESUMEN

Bovine anaplasmosis caused by Anaplasma marginale is a tick-borne disease of livestock with widespread prevalence and huge economic implications. In order to get new insights into modulation of host gene expression in response to natural infections of anaplasmosis, this study is the first attempt that compared the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) of A. marginale infected and healthy crossbred cattle. Transcriptome analysis identified shared as well as unique functional pathways in the two groups. Translation and structural constituent of ribosome were the important terms for the genes abundantly expressed in the infected as well as healthy animals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed that immunity and signal transduction related terms were enriched for the up-regulated genes in the infected animals. The over-represented pathways were cytokine-cytokine receptor interaction and signaling pathways involving chemokines, Interleukin 17 (IL17), Tumour Necrosis Factor (TNF), Nuclear Factor Kappa B (NFKB) etc. Interestingly, many genes previously associated with parasite-borne diseases such as amoebiasis, trypanosomiasis, toxoplasmosis, and leishmaniasis were profusely expressed in the dataset of the diseased animals. High expression was also evident for the genes for acute phase response proteins, anti-microbial peptides and many inflammatory cytokines. Role of cytokines in mediating communication between immune cells was the most conspicuous gene network identified through the Ingenuity Pathway Analysis. This study provides comprehensive information about the crosstalk of genes involved in host defense as well as parasite persistence in the host upon infection with A. marginale.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Enfermedades de los Bovinos , Animales , Bovinos , Anaplasmosis/genética , Anaplasmosis/epidemiología , Leucocitos Mononucleares , Anaplasma marginale/genética , Transducción de Señal/genética , Citocinas , Enfermedades de los Bovinos/genética
20.
Ticks Tick Borne Dis ; 14(4): 102168, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36940645

RESUMEN

Normalization of gene expression data using appropriate reference genes is critical to diminish any technical bias in an experiment involving quantitative real-time PCR (qPCR). To the best of our knowledge, this is the first report offering a systematic assessment of 14 potential reference genes (RPLP0, ACTB, RPS28, YWHAZ, SDHA, PPIA, RPS9, RPS15, UXT, GAPDH, B2M, BACH1, HMBS, and PPIB) for the identification of the most stable normalizers for qPCR of target genes in peripheral blood mononuclear cells (PBMCs) of bovines for vector-borne haemoparasitic diseases such as anaplasmosis, babesiosis, theileriosis, and trypanosomiasis. A total of 38 blood samples were collected from healthy as well as diseased cattle and buffaloes representing different haemoparasitic diseases. RNA isolated from the PBMCs was subjected to qPCR for the 14 prospective internal control genes. The comprehensive ranking of the genes was accomplished by the RefFinder tool that integrates the results of three algorithms (geNorm, NormFinder, and BestKeeper) and the comparative CT method. RPS15, B2M, and GAPDH were ranked to be the most stable genes, whereas, PPIA and HMBS emerged to be the least suitable genes. Validation of the selected reference genes by the qPCR analysis of two immunity genes, ISG15 and GPX7 was congruent with the observations of this study. We recommend that a panel of three reference genes including RPS15, B2M, and GAPDH could prove useful in delineating the transcriptional landscape of PBMCs for vector-borne haemoparasitic diseases in bovines.


Asunto(s)
Perfilación de la Expresión Génica , Leucocitos Mononucleares , Bovinos , Animales , Perfilación de la Expresión Génica/métodos , Estudios Prospectivos , ARN , Algoritmos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Búfalos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA