Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Magn Reson Imaging ; 83: 77-88, 2021 11.
Article En | MEDLINE | ID: mdl-34311065

RATIONALE AND OBJECTIVES: To comprehensively evaluate robustness and variations of DCE-MRI derived generalized-tracer-kinetic-model (GTKM) parameters in healthy and tumor tissues and impact of normalization in mitigating these variations on application to glioma. MATERIALS (PATIENTS) AND METHODS: A retrospective study included pre-operative 31 high-grade-glioma(HGG), 22 low-grade-glioma(LGG) and 33 follow-up data from 10 patients a prospective study with 4 HGG subjects. Voxel-wise GTKM was fitted to DCE-MRI data to estimate Ktrans, ve, vb. Simulations were used to evaluate noise sensitivity. Variation of parameters with-respect-to arterial-input-function (AIF) variation and data length were studied. Normalization of parameters with-respect-to mean values in gray-matter (GM) and white-matter (WM) regions (GM-Type-2, WM-Type-2) and mean curves (GM-Type-1, WM-Type-1) were also evaluated. Co-efficient-of-variation(CoV), relative-percentage-error (RPE), Box-Whisker plots, bar graphs and t-test were used for comparison. RESULTS: GTKM was fitted well in all tissue regions. Ktrans and ve in contrast-enhancing (CE) has shown improved noise sensitivity in longer data. vb was reliable in all tissues. Mean AIF and C(t) peaks showed ~38% and ~35% variations. During simulation, normalizations have mitigated variations due to changes in AIF amplitude in Ktrans and vb.. ve was less sensitive to normalizations. CoV of Ktrans and vb has reduced ~70% after GM-Type-1 normalization and ~80% after GM-Type-2 normalization, respectively. GM-Type-1 (p = 0.003) and GM-Type-2 (p = 0.006) normalizations have significantly improved differentiation of HGG and LGG using Ktrans. CONCLUSION: Ktrans and vb can be reliably estimated in normal-appearing brain tissues and can be used for normalization of corresponding parameters in tumor tissues for mitigating inter-subject variability due to errors in AIF. Normalized Ktrans and vb provided improved differentiation of HGG and LGG.


Brain Neoplasms , Glioma , Blood-Brain Barrier , Brain Neoplasms/diagnostic imaging , Contrast Media , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Permeability , Prospective Studies , Retrospective Studies
2.
J Magn Reson Imaging ; 51(1): 225-233, 2020 01.
Article En | MEDLINE | ID: mdl-31087724

BACKGROUND: Susceptibility weighted imaging (SWI) provides vascular information and plays an important role in improving the diagnostic accuracy of preoperative glioma grading. Intratumoral susceptibility signal intensities (ITSS) obtained from SWI has been used in glioma grading. However, the current method for estimation of ITSS is semiquantitative, manual count-dependent, and includes hemorrhage as well as vasculature. PURPOSE: To develop a quantitative approach that calculates the vasculature volume within tumors by filtering out the hemorrhage from ITSS using R2 * values and connected component analysis-based segmentation algorithm; to evaluate the accuracy of the proposed ITSS vasculature volume (IVV) for differentiating various grades of glioma; and compare it with reported semiquantitative ITSS approach. STUDY TYPE: Retrospective. SUBJECTS: Histopathologically confirmed 41 grade IV, 19 grade III, and 15 grade II glioma patients.Field Strength/Sequence: SWI (four echoes: 5.6, 11.8, 18, 24.2 msec) along with conventional MRI sequences (T2 -weighted, T1 -weighted, 3D-fluid-attenuated inversion recovery [FLAIR], and diffusion-weighted imaging [DWI]) at 3.0T. ASSESSMENT: R2 * relaxation maps were calculated from multiecho SWI. The R2 * cutoff value for hemorrhage ITSS was determined. A segmentation algorithm was designed, based on this R2 * hemorrhage combined with connected component shape analysis, to quantify the IVV from all slices containing tumor by filtering out hemorrhages. Semiquantitative ITSS scoring as well as total ITSS volume (TIV) including hemorrhages were also calculated. STATISTICAL TESTS: One-way analysis of variance (ANOVA) and Tukey-Kramer post-hoc tests were performed to see the difference among the three grades of the tumor (II, III, and IV) in terms of semiquantitative ITSS scoring, TIV, and IVV. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the three methods individually in discriminating between grades of glioma. RESULTS: One-way ANOVA showed that only the proposed IVV significantly differentiated different grades of gliomas having visible ITSS. ROC analysis showed that IVV provided the highest AUC for the discrimination of grade II vs. III (0.93), grade III vs. IV (0.98), and grade II vs. IV glioma (0.94). IVV also provided the highest sensitivity and specificity for differentiating grade II vs. III (87.44, 98.41), grade III vs. IV (97.15, 94.12), and grade II vs. IV (98.72, 92.31). DATA CONCLUSION: The proposed quantitative method segregates hemorrhage from tumor vasculature. It scores above the existing semiquantitative method in terms of ITSS estimation and grading accuracy. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:225-233.


Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Brain/diagnostic imaging , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Young Adult
3.
Neuroradiology ; 60(1): 43-50, 2018 Jan.
Article En | MEDLINE | ID: mdl-29090331

PURPOSE: MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. METHODS: T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. RESULTS: Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. CONCLUSION: The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas.


Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Contrast Media , Female , Humans , Image Interpretation, Computer-Assisted , Male , Meglumine/analogs & derivatives , Middle Aged , Neoplasm Grading , Organometallic Compounds , Retrospective Studies
...