Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
BMC Plant Biol ; 24(1): 357, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698319

BACKGROUND: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION: The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.


Calendula , Diatomaceous Earth , Metals, Heavy , Soil Pollutants , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Diatomaceous Earth/metabolism , Calendula/metabolism , Calendula/chemistry , Soil/chemistry , Biodegradation, Environmental , Environmental Restoration and Remediation/methods
2.
Biotechnol Biofuels Bioprod ; 17(1): 5, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38218877

BACKGROUND: Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin. Yet, the functions of laccase and peroxidases gene families remained largely unknown. Hence, the objective of this conducted study is to understand the role of specific LAC and PRX in Populus wood formation and to further investigate how the altered Lac and Prx expression affects biomass recalcitrance and plant growth. This study of heterologous expression of Arabidopsis Lac and Prx genes was conducted in poplar to avoid any otherwise occurring co-suppression mechanism during the homologous overexpression of highly expressed native genes. In the pursuit of optimizing lignocellulosic biomass for biofuel production, the present study focuses on harnessing the enzymatic potential of Arabidopsis thaliana Laccase2, Laccase4, and Peroxidase52 through heterologous expression. RESULTS: We overexpressed selected Arabidopsis laccase2 (AtLac2), laccase4 (AtLac4), and peroxidase52 (AtPrx52) genes, based on their high transcript expression respective to the differentiating xylem tissues in the stem, in hybrid poplar (cv. 717) expressed under the developing xylem tissue-specific promoter, DX15 characterized the transgenic populus for the investigation of growth phenotypes and recalcitrance efficiency. Bioinformatics analyses conducted on AtLac2 and AtLac4 and AtPrx52, revealed the evolutionary relationship between the laccase gene and peroxidase gene homologs, respectively. Transgenic poplar plant lines overexpressing the AtLac2 gene (AtLac2-OE) showed an increase in plant height without a change in biomass yield as compared to the controls; whereas, AtLac4-OE and AtPrx52-OE transgenic lines did not show any such observable growth phenotypes compared to their respective controls. The changes in the levels of lignin content and S/G ratios in the transgenic poplar resulted in a significant increase in the saccharification efficiency as compared to the control plants. CONCLUSIONS: Overall, saccharification efficiency was increased by 35-50%, 21-42%, and 8-39% in AtLac2-OE, AtLac4-OE, and AtPrx52-OE transgenic poplar lines, respectively, as compared to their controls. Moreover, the bioengineered plants maintained normal growth and development, underscoring the feasibility of this approach for biomass improvement without compromising overall plant fitness. This study also sheds light on the potential of exploiting regulatory elements of DX15 to drive targeted expression of lignin-modifying enzymes, thereby providing a promising avenue for tailoring biomass for improved biofuel production. These findings contribute to the growing body of knowledge in synthetic biology and plant biotechnology, offering a sustainable solution to address the challenges associated with lignocellulosic biomass recalcitrance.

3.
Front Plant Sci ; 14: 1216835, 2023.
Article En | MEDLINE | ID: mdl-37636093

Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.

4.
Plant Phenomics ; 2022: 9761095, 2022.
Article En | MEDLINE | ID: mdl-35620399

Fresh fruit and vegetables are invaluable for human health; however, their quality often deteriorates before reaching consumers due to ongoing biochemical processes and compositional changes. We currently lack any objective indices which indicate the freshness of fruit or vegetables resulting in limited capacity to improve product quality eventually leading to food loss and waste. In this conducted study, we hypothesized that certain proteins and compounds, such as glucosinolates, could be used as one potential indicator to monitor the freshness of broccoli following harvest. To support our study, glucosinolate contents in broccoli based on HPLC measurement and transcript expression of glucosinolate biosynthetic genes in response to postharvest stresses were evaluated. We found that the glucosinolate biosynthetic pathway coincided with the progression of senescence in postharvest broccoli during storage. Additionally, we applied machine learning-based hyperspectral image (HSI) analysis, unmixing, and subpixel target detection approaches to evaluate glucosinolate level to detect postharvest senescence in broccoli. This study provides an accessible approach to precisely estimate freshness in broccoli through machine learning-based hyperspectral image analysis. Such a tool would further allow significant advancement in postharvest logistics and bolster the availability of high-quality, nutritious fresh produce.

5.
Plants (Basel) ; 11(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35214825

Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. Knotted-like homeobox (KNOX) genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants. While Class I KNOX TF genes are mainly expressed in the shoot apical meristems of both monocot and eudicot plants and are involved in meristem maintenance and/or formation, Class II KNOXTF genes exhibit diverse expression patterns and their precise functions have mostly remained unknown, until recently. The expression patterns of Class II KNOX TF genes in Arabidopsis, namely KNAT3, KNAT4, KNAT5, and KNAT7, suggest that TFs encoded by at least some of these genes, such as KNAT7 and KNAT3, may play a significant role in secondary cell wall formation. Specifically, the expression of the KNAT7 gene is regulated by upstream TFs, such as SND1 and MYB46, while KNAT7 interacts with other cell wall proteins, such as KNAT3, MYB75, OFPs, and BLHs, to regulate secondary cell wall formation. Moreover, KNAT7 directly regulates the expression of some xylan synthesis genes. In this review, we summarize the current mechanistic understanding of the roles of Class II KNOX TFs in secondary cell wall formation. Recent success with the genetic manipulation of Class II KNOX TFs suggests that this may be one of the biotechnological strategies to improve plant feedstocks for bioethanol production.

6.
BMC Plant Biol ; 18(1): 140, 2018 Jul 09.
Article En | MEDLINE | ID: mdl-29986660

BACKGROUND: Pongamia (Millettia pinnata syn. Pongamia pinnata), an oilseed legume species, is emerging as potential feedstock for sustainable biodiesel production. Breeding Pongamia for favorable traits in commercial application will rely on a comprehensive understanding of molecular mechanism regulating oil accumulation during its seed development. To date, only limited genomic or transcript sequences are available for Pongamia, while a temporal transcriptome profiling of developing seeds is still lacking in this species. RESULTS: In this work, we conducted a time-series analysis of morphological and physiological characters, oil contents and compositions, as well as global gene expression profiles in developing Pongamia seeds. Firstly, three major developmental phases were characterized based on the combined evidences from embryonic shape, seed weight, seed moisture content, and seed color. Then, the gene expression levels at these three phases were quantified by RNA-Seq analyses with three biological replicates from each phase. Nearly 94% of unigenes were expressed at all three phases, whereas only less than 2% of unigenes were exclusively expressed at one of these phases. A total of 8881 differentially expressed genes (DEGs) were identified between phases. Furthermore, the qRT-PCR analyses for 10 DEGs involved in lipid metabolism demonstrated a good reliability of our RNA-Seq data in temporal gene expression profiling. We observed a dramatic increase in seed oil content from the embryogenesis phase to the early seed-filling phase, followed by a steady and moderate increase towards the maximum at the desiccation phase. We proposed that a highly active expression of most genes related to fatty acid (FA) and triacylglycerol (TAG) biosynthesis at the embryogenesis phase might trigger both the substantial oil accumulation and the membrane lipid synthesis for rapid cell proliferation at this phase, while a concerted reactivation of TAG synthesis-related genes at the desiccation phase might further promote storage lipid synthesis to achieve the maximum content of seed oils. CONCLUSIONS: This study not only built a bridge between gene expression profiles and oil accumulation in developing seeds, but also laid a foundation for future attempts on genetic engineering of Pongamia varieties to acquire higher oil yield or improved oil properties for biofuel applications.


Gene Expression Regulation, Plant/genetics , Millettia/metabolism , Plant Oils/metabolism , Seeds/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Plant/genetics , Metabolic Networks and Pathways/genetics , Millettia/genetics , Plant Oils/analysis , Seeds/chemistry , Seeds/growth & development , Transcriptome
...