Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
J Chromatogr A ; 1722: 464830, 2024 May 10.
Article En | MEDLINE | ID: mdl-38608366

Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.


Software , Chromatography, Liquid/methods , Algorithms , Peptides/analysis , Peptides/chemistry , Proteins/analysis , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Artificial Intelligence , Vaccines/chemistry , Vaccines/analysis , Feedback
2.
Anal Chem ; 96(12): 4960-4968, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38436624

The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.


Biological Products , Refractometry , Workflow , Chromatography, Gel , Proteins/analysis
3.
Anal Chim Acta ; 1293: 342178, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38331548

The (bio)pharmaceutical industry is rapidly moving towards complex drug modalities that require a commensurate level of analytical enabling technologies that can be deployed at a fast pace. Unsystematic method development and unnecessary manual intervention remain a major barrier towards a more efficient deployment of meaningful analytical assay across emerging modalities. Digitalization and automation are key to streamline method development and enable rapid assay deployment. This review discusses the use of computer-assisted multifactorial chromatographic method development strategies for fast-paced downstream characterization and purification of biopharmaceuticals. Various chromatographic techniques such as reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), ion exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and supercritical fluid chromatography (SFC) are addressed and critically reviewed. The most significant parameters for retention mechanism modelling, as well as mapping the separation landscape for optimal chromatographic selectivity and resolution are also discussed. Furthermore, several computer-assisted approaches for optimization and development of chromatographic methods of therapeutics, including linear, nonlinear, and multifactorial modelling are outlined. Finally, the potential of the chromatographic modelling and computer-assisted optimization strategies are also illustrated, highlighting substantial productivity improvements, and cost savings while accelerating method development, deployment and transfer processes for therapeutic analysis in industrial settings.


Chromatography, Reverse-Phase , Computers , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Pharmaceutical Preparations
4.
PLoS One ; 19(1): e0290306, 2024.
Article En | MEDLINE | ID: mdl-38236921

BACKGROUND AND PURPOSE: Management strategies for children with congenital health diseases (CHDs) should encompass more than just the medical aspect of the disease and consider how heart diseases affect their everyday activities and, subsequently, their quality of life (QoL). Global studies witnessed a greater emphasis on studying the QoL associated with CHD. However, there is still a great lag in such data in the Arab region. The purpose of this study was to evaluate QoL in children with CHD using an Arab sample from Jordan. The specific objectives were twofold: (1) to contrast the assessments of children's QoL reported by their parents with those reported by the children themselves, and (2) to assess the factors that influence the QoL of children with CHD. METHODS: A total of 79 children aged 2-18 with a confirmed diagnosis of CHD were included in the study, along with their mothers. Of them, 38.0% were girls, 67.1% were diagnosed with non-cyanotic CHD, 58.2% had a severe CHD, 92.4% had undergone at least one operation, 81.0% had repaired defects, 13.9% underwent palliated procedures, and 24.1% were admitted to a neonatal intensive care unit after delivery. The Pediatric Quality of Life Inventory was used to assess QoL of children with CHD. Both children's and parents' reports of QoL were analyzed using paired-sample t-tests, ANOVAs, and multiple linear regression. RESULTS: Older children reported significantly lower QoL scores, whereas there were no differences in parents-reported QoL scores across different children age groups. There was a divergence in perceptions of QoL between parents-reported and children-reported scores with parents reporting significantly lower scores. The children-reported QoL in this study seemed to be significantly associated with their gender, age, and the presence of learning difficulties, whereas the parent-reported QoL was only associated with the presence of learning difficulties. CONCLUSIONS: Responses from both children and parents need to be considered to understand the similarities and differences between them and to provide further insight into the optimal way to help children with CHD effectively navigate the transition into adulthood. Future research studies of outcomes for survivors of children with CHD are needed to identify high-risk survivors for worse psychosocial functioning and assess prevention measures and treatment interventions to improve their QoL.


Heart Defects, Congenital , Quality of Life , Child , Female , Infant, Newborn , Humans , Adolescent , Male , Quality of Life/psychology , Arabs , Heart Defects, Congenital/psychology , Multivariate Analysis , Linear Models , Parents/psychology
5.
J Pharm Biomed Anal ; 241: 115923, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38244392

Ion Chromatography (IC) is one of the most widely used methods for analyzing ionic species in pharmaceutical samples. A universal IC method that can separate a wide range of different analytes is highly desired as it can save a lot of time for method development and validation processes. Herein we report the development of a universal method for anions in active pharmaceutical ingredients (APIs) using computer-assisted chromatography modeling tools. We have screened three different IC columns (Dionex IonPac AS28-Fast 4 µm, AS19 4 µm and AS11-HC 4 µm) to determine the best suitable column for universal IC method development. A universal IC method was then developed using an AS11-HC 4 µm column to separate 31 most common anionic substances in 36 mins. This method was optimized using LC Simulator and a model which precisely predicts the retention behavior of 31 anions was established. This model demonstrated an excellent match between predicted and experimental analyte retention time (R2 =0.999). To validate this universal IC method, we have studied the stability of sulfite and sulfide analytes in ambient conditions. The method was then validated for a subset of 29 anions using water and organic solvent/water binary solvents as diluents for commercial APIs. This universal IC method provides an efficient and simple way to separate and analyze common anions in APIs. In addition, the method development process combined with LC simulator modeling can be effectively used as a starting point during method development for other ions beyond those investigated in this study.


Bulk Drugs , Water , Chromatography, Ion Exchange/methods , Anions/chemistry , Ions , Solvents/analysis , Computers
6.
Anal Bioanal Chem ; 416(5): 1269-1279, 2024 Feb.
Article En | MEDLINE | ID: mdl-38225399

The development of liquid chromatography UV and mass spectrometry (LC-UV-MS) assays in pharmaceutical analysis is pivotal to improve quality control by providing critical information about drug purity, stability, and presence and identity of byproducts and impurities. Analytical method development of these assays is time-consuming, which often causes it to become a bottle neck in drug development and poses a challenge for process chemists to quickly improve the chemistry. In this study, a systematic and efficient workflow was designed to develop purity assay and purification methods for a wide range of compounds including peptides, proteins, and small molecules with MS-compatible mobile phases (MP) by using automated LC screening instrumentation and in silico modeling tools. Initial LC MPs and chromatography column screening experiments enabled quick identification of conditions which provided the best resolution in the vicinity of the target compounds, which is further optimized using computer-assisted modeling (LC Simulator from ACD/Labs). The experimental retention times were in good agreement with the predicted retention times from LC Simulator (ΔtR < 7%). This workflow presents a practical workflow to significantly expedite the time needed to develop optimized LC-UV-MS methods, allowing for a facile, automatic method optimization and reducing the amount of manual work involved in developing new methods during drug development.


Liquid Chromatography-Mass Spectrometry , Proteins , Workflow , Chromatography, Liquid , Computer Simulation
7.
Comput Biol Chem ; 109: 108008, 2024 Apr.
Article En | MEDLINE | ID: mdl-38198964

Stercularin is a coumarin, isolated from the ethyl acetate fraction of stem bark and leaves of S. diversifolia. Pharmacologically it is active against cancer, diabetes, and inflammation etc. The molecule is further screened for in vitro pharmacological activities. In addition, a detailed description on its drug likeness and pharmacokinetic profile has been established to further explore its fate as a drug candidate. Stercularin exhibited antiglycation, immunomodulatory, and leishmanicidal activity in three different in vitro models. The IC50 values obtained in these three assays were 80.22 ± 0.46 mg/ml, 12.8 ± 1.6 µg/ml, and 8.32 ± 0.42 µg/ml, respectively. In case of drug likeness evaluation, Stercularin has acceptable physicochemical properties and compliant with major drug likeness descriptors i.e., Lipinski rule, Pfizer rule, GSK rule, and "golden triangle". Accepting Lipinski rule implies the oral drug development of Stercularin. Pharmacokinetically, Stercularin is permeable to Caco-2 and MDCK cell lines. 'Boiled-egg' plot suggest intestinal route of absorption, blood brain barrier nonpermeating, and not affected by p-glycoprotein. Stercularin has high plasma protein binding with low free fraction circulating in the plasma. Stercularin proved to be the substrate and/or inhibitor of CYP 450 system with a moderate half-life and clearance rate to allow flexible dosing regimen. Finally, slight risk of toxicity exists for Stercularin, but not being limiting factors of drug knock out. A nature isolated Stercularin possess pharmacological activities and is predicted to have acceptable pharmacokinetic profile. Further drug development and in vivo studies are desirable for optimization.


Sterculia , Humans , Caco-2 Cells , Blood-Brain Barrier
8.
Front Chem ; 11: 1145974, 2023.
Article En | MEDLINE | ID: mdl-37123881

Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.

9.
Comput Biol Chem ; 104: 107861, 2023 Jun.
Article En | MEDLINE | ID: mdl-37060784

Poor pharmacokinetic and safety profiles create significant hurdles in the drug development process. This work focuses on a detailed understanding of drug discovery interplay among physicochemical, pharmacokinetic, toxicity endpoints, and antioxidant properties of oxindole derivatives. DFT compiutations were also performed at B3LYP/6-311G** level to evaluate the physicochemical properties, global reactivity features, and intramolecular interactions. The BOILED-Egg pharmacokinetic model envisaged gastrointestinal absorption, blood-brain barrier penetration, and no interaction with p-glycoprotein for compounds C1 and C2. The physicochemical evaluation revealed that C1 possesses superior drug-like properties fit for oral absorption. Both derivatives were predicted to have high plasma protein binding, efficient distribution, and inhibiting CYP 450 major isoforms but serve as substrates only for a few of them. Both molecules have mild to moderate clearance rates. Out of ten toxicity parameters, only hepatotoxicity was predicted. DFT results implied that the meta position of the -OH group made the possibility of charge transfer greater than -para positioned -OH, due to the ΔNmax (eV) values of molecules C1 and C2 being calculated at 2.596 and 2.477, respectively. Both C1 and C2 exhibited a concentration dependant DPPH and ABTS radical scavenging activity. The chemical structure-physicochemical-pharmacokinetic relationship identified the meta position as the favorite for the electron-withdrawing hydroxyl group. This provides useful insight to medicinal chemists to design 6-chlorooxindole derivatives with an acceptable drug-like and pharmacokinetic property.


Antioxidants , Drug Discovery , Antioxidants/pharmacology , Antioxidants/metabolism , Oxindoles/pharmacology , Oxindoles/metabolism , Blood-Brain Barrier/metabolism , Chemical Phenomena
10.
Anal Chem ; 94(49): 17131-17141, 2022 12 13.
Article En | MEDLINE | ID: mdl-36441925

The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a "hit-or-miss" strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.


Biological Products , Hydrophobic and Hydrophilic Interactions , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Antibodies, Monoclonal/analysis
11.
Angew Chem Int Ed Engl ; 61(45): e202208854, 2022 11 07.
Article En | MEDLINE | ID: mdl-36111975

Generality in analytical chemistry can be manifested in impactful platforms that can streamline modern organic synthesis and biopharmaceutical processes. We herein introduce a hybrid separation technique named Dual-Gradient Unified Chromatography (DGUC), which is built upon an automated dynamic modulation of CO2 , organic modifier, and water blends with various buffers. This concept enables simultaneous multicomponent analysis of both small and large molecules across a wide polarity range in single experimental runs. After a careful investigation of its fundamental aspects, a DGUC-DAD-MS screening workflow that combines multiple orthogonal column and mobile phase choices across a far-reaching universal elution profile is also reported. The power of this framework is demonstrated with new analytical applications guiding academic and industrial laboratories in the development of new (bio)pharmaceutical targets (e.g. synthetic intermediates, nucleosides, cyclic and linear peptides, proteins, antibody drug conjugates).


Chromatography , Proteins , Proteins/analysis , Peptides , Water/chemistry , Nucleosides
12.
Anal Chem ; 94(35): 12176-12184, 2022 09 06.
Article En | MEDLINE | ID: mdl-36001377

Isolation and chemical characterization of target components in fast-paced pharmaceutical laboratories can often be challenging, especially when dealing with mixtures of closely related, possibly unstable species. Traditionally, this process involves intense labor and manual intervention including chromatographic method development and optimization, fraction collection, and drying processes prior to NMR analyses for unambiguous structure elucidation. To circumvent these challenges, a foundational framework for the proper utilization of supercritical carbon dioxide (scCO2) and deuterated modifiers (CD3OD) in sub/supercritical fluid chromatography (SFC) is herein introduced. This facilitates a streamlined multicomponent isolation with minimized protic residues, further enabling immediate NMR analysis. In addition to bypassing tedious drying processes and minimizing analyte degradation, this approach (complementary to traditional reversed-phase liquid chromatography, RPLC) delivers highly efficient separations and automated fraction collection using readily available analytical/midscale SFC instrumentation. A series of diverse analytes across a wide spectrum of chemical properties (acid, basic, and neutral), combined with different stationary-phase columns in SFC are investigated using both a protic organic modifier (CH3OH) and its deuterated counterpart (CD3OD). The power of this framework is demonstrated with pharmaceutically relevant applications in the context of target characterization and analysis of complex multicomponent reaction mixtures from modern synthetic chemistry, demonstrating high isolation yields while reducing both the environmental footprint and manual intervention. This workflow enables unambiguous fast-paced structure elucidation on the analytical scale, providing results that are comparable to traditional, but time-consuming, RPLC purification approaches.


Chromatography, Supercritical Fluid , Acids , Chromatography, Reverse-Phase , Chromatography, Supercritical Fluid/methods
13.
J Chromatogr A ; 1674: 463094, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35609494

Chiral sub/supercritical fluid chromatography (SFC) has established itself as one of the preferred techniques for enantioseparations at both analytical and preparative scale. Herein, we introduce a parallel multicolumn SFC screening for automated chiral method development in fast-paced settings. The practicality and speed advantages of this approach are illustrated with parallel screening of a diverse set of chiral molecules across ten columns with five different organic modifiers/CO2 based eluents enabling rapid identification of suitable enantioseparation conditions for accelerated purification of pharmaceutical targets. Rapid delivery turnarounds of pure enantiomers of less than 1 h from screening to target isolation are demonstrated illustrating the power of this approach.


Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Indicators and Reagents , Pharmaceutical Preparations , Stereoisomerism
14.
Anal Bioanal Chem ; 414(12): 3581-3591, 2022 May.
Article En | MEDLINE | ID: mdl-35441858

Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase's properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (1D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (2D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.


Biological Products , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange/methods , Peptides , Proteins/analysis
15.
Anal Chem ; 94(9): 4065-4071, 2022 03 08.
Article En | MEDLINE | ID: mdl-35199987

Tandem column liquid chromatography (LC) is a convenient, cost-effective approach to resolve multicomponent mixtures by serially coupling columns on readily available one-dimensional separation systems without specialized user training. Yet, adoption of this technique remains limited, mainly due to the difficulty in identifying optimal selectivity out of many possible tandem column combinations. At this point, method development and optimization require laborious "hit-or-miss" experimentation and "blind" screening when investigating different column selectivity without standard analytes. As a result, many chromatography practitioners end up combining two columns of similar selectivity, limiting the scope and potential of tandem column LC as a mainstay for industrial applications. To circumvent this challenge, we herein introduce a straightforward in silico multifactorial approach as a framework to expediently map the separation landscape across multiple tandem columns (achiral and chiral) and eluent combinations (isocratic and gradient elution) under reversed-phase LC conditions. Retention models were built using commercially available LC simulator software showcasing less than 2% difference between experimental and simulated retention times for analytes of interest in multicomponent pharmaceutical mixtures (e.g., metabolites and cyclic peptides).


Chromatography, Reverse-Phase , Chromatography, Liquid/methods , Pharmaceutical Preparations
16.
Angew Chem Int Ed Engl ; 61(21): e202117655, 2022 05 16.
Article En | MEDLINE | ID: mdl-35139257

At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.


Biological Products , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Solvents
17.
Phytomedicine ; 94: 153830, 2022 Jan.
Article En | MEDLINE | ID: mdl-34775359

BACKGROUND: With growing global prevalence, cancer is a major cause of disease-related deaths. The understanding of the fundamental tumor pathology has contributed to the development of agents targeting oncogenic signaling pathways. Although these agents have increased survival for defined cancers, the therapeutic choices are still limited due to the development of drug resistance. CRISPR/Cas9 is a powerful new technology in cancer therapy by facilitating the identification of novel treatment targets and development of cell-based treatment strategies. PURPOSE: We focused on applications of the CRISPR/Cas9 system in cancer therapy and discuss nanoscale delivery of cytotoxic phytochemical targeting the CRISPR/Cas9 system. RESULTS: Genome engineering has been significantly accelerated by the advancement of the CRISPR/Cas9 technique. Phytochemicals play a key role in treating cancer by targeting various mechanisms and pathways. CONCLUSIONS: The use of CRISPR/Cas9 for nanoscale delivery of phytochemicals opens new avenues in cancer therapy. One of the main obstacles in the clinical application of CRISPR/Cas9 is safe and efficient delivery. As viral delivery methods have certain drawbacks, there is an urgent need to develop non-viral delivery systems for therapeutic applications.


Gene Editing , Neoplasms , CRISPR-Cas Systems , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Phytochemicals
18.
Anal Chem ; 94(3): 1804-1812, 2022 01 25.
Article En | MEDLINE | ID: mdl-34931812

Enantioselective chromatography has been the preferred technique for the determination of enantiomeric excess across academia and industry. Although sequential multicolumn enantioselective supercritical fluid chromatography screenings are widespread, access to automated ultra-high-performance liquid chromatography (UHPLC) platforms using state-of-the-art small particle size chiral stationary phases (CSPs) is an underdeveloped area. Herein, we introduce a multicolumn UHPLC screening workflow capable of combining 14 columns (packed with sub-2 µm fully porous and sub-3 µm superficially porous particles) with nine mobile phase eluent choices. This automated setup operates under a vast selection of reversed-phase liquid chromatography, hydrophilic interaction liquid chromatography, polar-organic mode, and polar-ionic mode conditions with minimal manual intervention and high success rate. Examples of highly efficient enantioseparations are illustrated from the integration of chiral screening conditions and computer-assisted modeling. Furthermore, we describe the nuances of in silico method development for chiral separations via second-degree polynomial regression fit using LC simulator (ACD/Labs) software. The retention models were found to be very accurate for chiral resolution of single and multicomponent mixtures of enantiomeric species across different types of CSPs, with differences between experimental and simulated retention times of less than 0.5%. Finally, we illustrate how this approach lays the foundation for a streamlined development of ultrafast enantioseparations applied to high-throughput enantiopurity analysis and its use in the second dimension of two-dimensional liquid chromatography experiments.


Chromatography, Reverse-Phase , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Computer Simulation , Stereoisomerism
19.
Anal Chem ; 93(33): 11532-11539, 2021 08 24.
Article En | MEDLINE | ID: mdl-34375071

Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories will depend on the development of approaches to make method development for 2D-LC more systematic, less tedious, and less reliant on user expertise. In this paper, we build on previous efforts in these directions by describing the use of multifactorial modeling software that can help streamline and simplify the method development process for 2D-LC. Specifically, we have focused on building retention models for second dimension (2D) separations involving variables including gradient time, temperature, organic modifier blending, and buffer concentration using LC simulator (ACD/Labs) software. Multifactorial retention modeling outcomes are illustrated as resolution map planes or cubes that enable straightforward location of 2D conditions that maximize resolution while minimizing analysis time. We also illustrate the practicality of this approach by identifying conditions that yield baseline separation of all compounds co-eluting from a first dimension (1D) separation using a single combination of 2D stationary phase and elution conditions. The multifactorial retention models were found to be very accurate for both the 1D and 2D separations, with differences between experimental and simulated retention times of less than 0.5%. Pharmaceutical applications of this approach for multiple heartcutting 2D-LC were demonstrated using IEC-IEC or achiral RPLC-chiral RPLC for 2D separations of multicomponent mixtures. The framework outlined here should help make 2D-LC method development more systematic and streamline development and optimization for a variety of 2D-LC applications in both industry and academia.


Chromatography, Liquid , Computer Simulation
20.
Article En | MEDLINE | ID: mdl-33845343

Recent advances in biomedical and pharmaceutical processes has enabled a notable increase of protein- and peptide-based drug therapies and vaccines that often contain a higher-order structure critical to their efficacy. Hyphenation of chromatographic and spectrometric techniques is at the center of all facets of biopharmaceutical analysis, purification and chemical characterization. Although computer-assisted chromatographic modeling of small molecules has reached a mature stage across the pharmaceutical industry, software-based method optimization approaches for large molecules has yet to see the same revitalization. Conformational changes of biomolecules under chromatographic conditions have been identified as the major culprit in terms of sub-optimal modeling outcomes. In order to circumvent these challenges, we herein investigate the outcomes generated via computer-assisted modeling from using different chaotropic and denaturing mobile phases (trifluoroacetic acid, sodium perchlorate and guanidine hydrochloride in acetonitrile/water-based eluents). Linear and polynomial regression retention models using ACD/Labs software were built as a function of gradient slope, column temperature and mobile phase buffer for eight different model proteins ranging from 12 to 670 kDa (holo-transferrin, cytochrome C, apomyoglobin, ribonuclease A, ribonuclease A type I-A, albumin, y-globulin and thyroglobulin bovine). Correlation between experimental and modeled outputs was substantially improved by using strong chaotropic and denaturing modifiers in the mobile phase, even when using linear regression modeling as typically observed for small molecules. On the contrary, the use of conventional TFA buffer concentrations at low column temperatures required the used of polynomial regression modeling indicating potential conformational structure changes of proteins upon chromatographic conditions. In addition, we illustrate the power of modern computer-assisted chromatography modeling combined with chaotropic agents in the developing of new RPLC assays for protein-based therapeutics and vaccines.

...