Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Chemosphere ; : 143374, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306112

RESUMEN

The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 µg/L and 5 µg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.

2.
Future Med Chem ; : 1-14, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311079

RESUMEN

Aim: In light of various biological activities of benzimidazole and azines, this study focuses on reporting novel derivatives of benzimidazole nucleus.Methods: Twenty novel azines of benzimidazole were synthesized, characterized and tested for in vitro urease inhibitory activity.Results: All these derivatives showed excellent to good inhibition in the range of IC50 values 14.21 ± 1.87 to 76.11 ± 1.81 µM by comparing with standard thiourea 21.14 ± 0.42 µM. Docking studies were performed for the targeted benzimidazole derivatives to understand the binding mechanics. The results indicated higher binding efficacy compared with the reference inhibitor.Conclusion: This work identifies potential lead candidates for novel urease inhibitors, which with industrial support may be harnessed for the development of new drugs.


[Box: see text].

3.
Innovation (Camb) ; 5(5): 100687, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39285903

RESUMEN

Energy crops play a vital role in meeting future energy and chemical demands while addressing climate change. However, the idealization of low-carbon workflows and careful consideration of cost-benefit equations are crucial for their more sustainable implementation. Here, we propose tobacco as a promising energy crop because of its exceptional water solubility, mainly attributed to a high proportion of water-soluble carbohydrates and nitrogen, less lignocellulose, and the presence of acids. We then designed a strategy that maximizes biomass conversion into bio-based products while minimizing energy and material inputs. By autoclaving tobacco leaves in water, we obtained a nutrient-rich medium capable of supporting the growth of microorganisms and the production of bioproducts without the need for extensive pretreatment, hydrolysis, or additional supplements. Additionally, cultivating tobacco on barren lands can generate sufficient biomass to produce approximately 573 billion gallons of ethanol per year. This approach also leads to a reduction of greenhouse gas emissions by approximately 76% compared to traditional corn stover during biorefinery processes. Therefore, our study presents a novel and direct strategy that could significantly contribute to the goal of reducing carbon emissions and global sustainable development compared to traditional methods.

4.
Chemistry ; : e202402382, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087671

RESUMEN

Photo-regulated transmembrane ionophores enable spatial and temporal control over activity, offering promise as targeted therapeutics. Key to such applications is control using bio-compatible visible light. Herein, we report red-shifted azobenzene-derived synthetic anionophores that use amber or red light to trigger (E)-(Z) photoisomerisation and activation of transmembrane chloride transport. We demonstrate that by tuning the thermal half-life of the more active, but thermodynamically unstable, Z isomer to relax on the timescale of minutes, transient activation of ion transport can be achieved by activating with solely with visible light and deactivating by thermal relaxation.

5.
Front Plant Sci ; 15: 1400215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145193

RESUMEN

Salinity is a significant threat that causes considerable yield losses in date palm. The root endophytic fungus Piriformospora indica has proven effective in providing salt stress tolerance to host plants. However, the underlying molecular mechanism facilitating the date palm's response to P. indica inoculation, and its involvement in the salt stress tolerance, remains unknown. In this study, the colonization of P. indica on date palm seedlings exposed to saline conditions was observed through confocal microscopy, and its impact on gene expressions was evaluated using the transcriptomic analysis. Our findings show that P. indica colonization reinforced the cortical cells, prevented them from plasmolysis and cell death under salinity. The RNAseq analysis produced clean reads ranging from 62,040,451 to 3,652,095 across the treatment groups, successfully assembling into 30,600 annotated genes. Out of them, the number of differentially expressed genes (DEGs) varied across the treatments: i.e., 2523, 2031, and 1936 DEGs were upregulated, while 2323, 959, and 3546 were downregulated in Salt, Fungi, and Fungi+Salt groups, respectively. Furthermore, principal component analysis based on transcriptome profiles revealed discrete clustering of samples from different treatment groups. KEGG and GO pathways enrichment analysis highlighted variation in the number and types of enriched pathways among the treatments. Our study indicated variations in gene expression related to plant hormone biosynthesis and signal transduction (auxin, abscisic acid, gibberellin, and ethylene), ABC transporters, sodium/hydrogen exchanger, cation HKT transporter, transcription factors such as WRKY and MYBs, and the plant immune system (lipoxygenase and jasmonate) of the date palm seedlings. By characterizing the transcriptome of date palm roots under salt stress and with colonization of P. indica, the present findings provide valuable perspectives on the molecular mechanisms responsible for inducing salinity stress tolerance in plants.

6.
Future Med Chem ; 16(12): 1185-1203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989989

RESUMEN

Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.


[Box: see text].


Asunto(s)
Acetofenonas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa , Acetofenonas/química , Acetofenonas/farmacología , Acetofenonas/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Dominio Catalítico
7.
Bioorg Chem ; 150: 107501, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38865858

RESUMEN

In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , alfa-Amilasas , alfa-Glucosidasas , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Relación Estructura-Actividad , Hidrazinas/química , Hidrazinas/farmacología , Hidrazinas/síntesis química , Estructura Molecular , Humanos , Relación Dosis-Respuesta a Droga , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Agentes Antiglicación
8.
J Surg Case Rep ; 2024(6): rjae407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38859966

RESUMEN

Retrocaval ureter is a rare congenital vascular anomaly with an incidence of 0.13%, leading to the passage of the right ureter behind the inferior vena cava and then turning around it to attain its lateral position. The condition is usually associated with obstruction in the right kidney and proximal ureter leading to symptoms like dull aching pain in the flanks, recurrent episodes of urinary tract infections, and recurrent stone formation. The patient presented with recurrent episodes of burning micturition and pain in the right flank for the past 6 months. A contrast-enhanced computed tomography kidney-ureter-bladder was done to diagnose the condition. The patient was managed by open pelviureteric anastomosis lateral to the inferior vena cava, thus eliminating the obstruction on the ureter. The patient has had an uneventful postoperative follow-up. Retrocaval ureter is a rare condition and should be clinically suspected in cases of hydronephrosis where other causes have been ruled out. Different approaches can be used to correct the anomaly. In this case report, an open transperitoneal intraabdominal approach has been used.

9.
J Mater Chem B ; 12(24): 5950-5956, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38804847

RESUMEN

Therapeutic applications have sparked increased interest in the use of synthetic anion receptors for ion transport across lipid membranes. In this context, the construction of synthetic transmembrane transporters for the physiologically important chloride ion is currently of enormous interest. As a result, considerable effort is being devoted to the design and synthesis of artificial transmembrane chloride ion transporters. However, only inadequate progress has been made in developing macrocyclic chloride ion transporters using the fundamental principles of supramolecular chemistry, and hence this field entails fostering investigations. In this investigation, the synthesis of two new double walled trifluorophenyl/phthalimide extended calix[4]pyrrole (C4P) receptors (3 and 7) has been successfully reported. 1H-NMR titration and HRMS studies confirmed the 1 : 1 binding stoichiometry of the chloride ion with these receptors in the solution phase (only receptor 3b was studied by 1H-NMR). Regarding ion transport of 3b and 7, when studied in the HPTS-based vesicular system, 3b showed better activity with an EC50 value of 0.39 µM. The detailed ion transport studies on 3b have revealed that ion transport occurs through the Cl-/NO3- antiport mode.


Asunto(s)
Calixarenos , Porfirinas , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Moleculares , Conformación Molecular , Porfirinas/química , Calixarenos/química , Ftalimidas/química , Flúor/química , Cloruros/química , Iones/química
10.
Chem Biodivers ; 21(8): e202400704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781003

RESUMEN

Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (in vitro). In the series, six compounds 12 (IC50=10.19±0.16 µM), 11 (IC50=15.05±1.11 µM), 10 (IC50=17.01±1.23 µM), 9 (IC50=17.22±0.81 µM), 13 (IC50=19.31±0.18 µM), and 14 (IC50=19.62±0.21 µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24 µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Hidrazonas , Simulación del Acoplamiento Molecular , Bases de Schiff , Terfenadina , Ureasa , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Terfenadina/análogos & derivados , Terfenadina/química , Terfenadina/metabolismo , Terfenadina/farmacología , Terfenadina/síntesis química , Teoría Funcional de la Densidad , Estructura Molecular , Relación Estructura-Actividad , Canavalia/enzimología
11.
RSC Adv ; 14(16): 10978-10994, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577436

RESUMEN

In recent years, polyhydroquinolines have gained much attention due to their widespread applications in medicine, agriculture, industry, etc. Here, we synthesized a series of novel hydrazone-based polyhydroquinoline derivatives via multi-step reactions. These molecules were characterized by modern spectroscopic techniques (1H-NMR, 13C NMR, and LC-HRMS) and their antibacterial and in vitro α-glucosidase inhibitory activities were assessed. Compound 8 was found to be the most active inhibitor against Listeria monocytogenes NCTC 5348, Bacillus subtilis IM 622, Brevibacillus brevis, and Bacillus subtilis ATCC 6337 with a zone of inhibition of 15.3 ± 0.01, 13.2 ± 0.2, 13.1 ± 0.1, and 12.6 ± 0.3 mm, respectively. Likewise, compound 8 also exhibited the most potent inhibitory potential for α-glucosidase (IC50 = 5.31 ± 0.25 µM) in vitro, followed by compounds 10 (IC50 = 6.70 ± 0.38 µM), and 12 (IC50 = 6.51 ± 0.37 µM). Furthermore, molecular docking and DFT analysis of these compounds showed good agreement with experimental work and the nonlinear optical properties calculated here indicate that these compounds are good candidates for nonlinear optics.

12.
Angew Chem Int Ed Engl ; 63(22): e202403314, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38517056

RESUMEN

Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.


Asunto(s)
Enlace de Hidrógeno , Aniones/química , Ionóforos/química , Oxidación-Reducción , Estructura Molecular , Transporte Iónico
13.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385366

RESUMEN

This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.

14.
Bioorg Chem ; 144: 107144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281382

RESUMEN

A series of twenty-seven bis(acylhydrazones) were successfully synthesized with high yields through a multistep process, which entailed the esterification of hydroxyl groups, hydrazination with an excess of hydrazine hydrate, and subsequent reactions with various carbonyl moieties (aldehydes). In the final stage of synthesis, different chemical species including aromatic, heterocyclic, and aliphatic compounds were integrated into the framework. The resulting compounds were characterized using several spectroscopic techniques (1H NMR, 13C NMR, and mass spectrometry). Their anticholinesterase activities were assessed in vitro by examining their interactions with two cholinesterase enzymes: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the synthesized hits, compounds 3, 5, 6, 9-12, and 14 exhibited good to moderate inhibition of AChE. Specifically, 10 (IC50 = 26.3 ± 0.4 µM) and 11 (IC50 = 28.4 ± 0.5 µM) showed good inhibitory activity against AChE, while 9, 12, 3, and 6 exhibited significant inhibition potential against AChE with IC50 values ranging from 35.2 ± 1.1 µM to 64.4 ± 0.3 µM. On the other hand, 5 (IC50 = 22.0 ± 1.1 µM) and 27 (IC50 = 31.3 ± 1.3 µM) displayed significant, and 19 (IC50 = 92.6 ± 0.4 µM) showed moderate inhibitory potential for BChE. Notably, 5 and 27 exhibited dual inhibition of AChE and BChE, with greater potency than the standard drug galantamine. The binding patterns of these molecules within the binding cavities of AChE and BChE were anticipated by molecular docking which showed good correlation with our in vitro findings. Further structural optimization of these molecules may yield more potent AChE and BChE inhibitors.


Asunto(s)
Compuestos de Bifenilo , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Hidrazinas , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
15.
ACS Infect Dis ; 10(2): 371-376, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38262044

RESUMEN

The development of potent antibacterial agents has become increasingly difficult as bacteria continue to evolve and develop resistance to antibiotics. It is therefore imperative to find effective antimicrobial agents that can address the evolving challenges posed by infectious diseases and antimicrobial resistance. Using artificial transmembrane ion transporters is an emerging and promising avenue to address this issue. We report pyridyl-linked hetero hydrazones as highly efficient transmembrane HCl symporters. These compounds offer an appropriate HCl binding site through cooperative protonation, followed by recognition of chloride ions. HCl transport by these compounds inhibits the growth of different Gram-negative bacterial strains with high efficacy by affecting the cell envelope homeostasis. This specific class of compounds holds substantial promise in the ongoing pursuit of developing highly efficient antibacterial agents.


Asunto(s)
Antiinfecciosos , Simportadores , Hidrazonas/farmacología , Cloruros , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología
16.
J Family Med Prim Care ; 12(10): 2385-2391, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38074239

RESUMEN

Background: SARS-CoV-causing COVID-19 resulted in mortality, and the clinic-epidemiological profile at the time of admission of patients who died later could provide an insight into pathophysiological consequences due to infection. Method: Retrospective observational study of 64 RTPCR-confirmed COVID-19 non-survivors was conducted from April - June 2021 and January February 2022. Data were analyzed, and a P value<0.05 was taken as significant. Results: 60.94% and 39.06 % were males and females, and 26.57% & 73.43 % of patients had moderate and severe disease, respectively. Fever, cough, and dyspnea were the most common presenting symptoms. 78.12% and 21.88% had pre-existing (diabetes and hypertension were most common) and no co-morbidities, respectively. 65.62 & 17.19 % of patients had bilateral and unilateral ground glass opacities, respectively. Thrombocytopenia, lymphopenia, neutrophilia, elevated monocytes, and neutrophil-lymphocyte ratio (NLR) of 7.52 were hematological findings. D dimer was elevated. ABG showed low PaO2 and SPO2 %. ALT and AST were elevated. Tachycardia was also present. Compared to the first wave, no significant association of gender with severity was found. However, the percentage of male patients was higher. The association of the duration of stay and co-morbidity with disease severity was significant in both the first and subsequent waves of COVID-19. Conclusion: Co-morbidity, disease severity, and radiological lung opacities play a role in the outcome of COVID-19. The associated findings are hematological, renal, liver, cardiovascular, and arterial blood gas derangements.

17.
Future Med Chem ; 15(23): 2195-2208, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38085012

RESUMEN

Background: Medication used to treat Type 2 diabetes by decreasing the absorption of carbohydrates in the intestine consists of α-glucosidase inhibitors. Polyhydroquinoline derivatives have attracted interest as excellent antidiabetic agents. Methods: Polyhydroquinoline derivatives (1-17) were synthesized and tested for in vitro α-glucosidase inhibitory activity. Results: All the synthesized compounds exhibited excellent to good inhibitory activity, having IC50 values from 1.23 ± 0.03 to 73.85 ± 0.61 µM, compared with the standard drug, acarbose. The binding mechanism of these derivatives with α-glucosidase was deduced by docking studies and indicated that a slight variation in the orientation of compounds, affects their binding capability. Conclusion: In order to find new antidiabetic drugs, this study has discovered prospective lead candidates.


Asunto(s)
Diabetes Mellitus Tipo 2 , alfa-Glucosidasas , Humanos , Estructura Molecular , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química
18.
Bioorg Chem ; 141: 106847, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37722268

RESUMEN

The anti-inflammatory and analgesic drugs currently used are associated with several adverse effects and found to be highly unsafe for long-term use. Currently, nineteen novel bis-Schiff base derivatives (1-19) of flurbiprofen have been designed, prepared and assessed for in-vivo analgesic, anti-inflammatory and in vivo acute toxicity evaluation. The structures of the acquired compounds were deduced through modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR. Amongst the series, compounds 7, 9, and 10 attributed potent activities with 93.89, 92.50, and 90.47% decreased edema, respectively compared to flurbiprofen (90.01%), however, compounds 11 and 15 exhibited significant activity of 90.00% decrease. Out of them, fourteen compounds (1-6, 8, 12-14, and 16-19) displayed good activity in the range of 68.96-86.95%. In case of an analgesic study, all the derivatives significantly (p 0.001) increased the pain threshold time particularly compound 7 had the best analgesic effect (24 ± 2.08 s) in comparison with flurbiprofen (21.66 ± 2.02 s) using hot plate test. Similarly, in the acetic acid-induced writhing test, compound 7 determined a potent inhibitory effect (60.47 %) close to flurbiprofen (59.28%). All the synthesized derivatives were found safe up to the dose of 30 mg/kg, in acute toxicity study. On a molecular scale, the synthesized compounds were modeled through a ligand-based pharmacophore study and molecular docking to have insight into the different possible interactions leading to high inhibition levels against the COX-2 enzyme.


Asunto(s)
Flurbiprofeno , Humanos , Flurbiprofeno/farmacología , Flurbiprofeno/química , Inhibidores de la Ciclooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2 , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Antiinflamatorios/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Antiinflamatorios no Esteroideos/química , Carragenina
19.
Chem Sci ; 14(33): 8897-8904, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621434

RESUMEN

Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 µM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.

20.
RSC Adv ; 13(36): 25379-25390, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37636505

RESUMEN

In current research, two functional components, i.e., hydrazone and bisphenol sulfide were combined to get useful supramolecules in medicinal chemistry. Herein 25 new 4,4'-thiodiphenol bis-acylhydrazones were synthesized in good to excellent yields. Initially ethyl-2-chloroacetate was reacted with 4,4'-thiodiphenol, which was further reacted with excess hydrazine hydrate to produce 2,2'-((thiobis(4,1-phenylene))bis(oxy))di(acetohydrazide), which was then combined with various aromatic and aliphatic aldehydes to get the desired products (hydrazones, 4a-4y). The synthesized supramolecules were characterized by contemporary spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy. The synthetic compound's cholinesterase blocking activity was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes where compounds 4n, and 4h showed excellent inhibitory potential for AChE, while 4b, and 4h, demonstrated most potent inhibition of BChE. The starting compound (SM3) and compounds 4h and SM3 depicted excellent dual inhibitory capabilities for both enzymes. The chemical basis of anticholinesterase activity was investigated using a structure-based molecular docking approach. The biological significance and the ease of synthesis of this class of compounds should be considered in therapeutic development for Alzheimer's disease treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA