Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Anim Biosci ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38665084

Objective: This study aims to evaluate the immunomodulatory effects of coconut oil extract (COE) in broilers experimentally infected with velogenic Newcastle disease virus (vNDV). Methods: A total of 150 broiler birds (day-old) were equally divided into five study groups i.e., negative control, positive control, COE-1, COE-2, and COE-3. On day 10, broilers of groups COE-1, COE-2, and COE-3 were supplemented with 1, 2, and 3 ml of COE respectively per liter of drinking water for 15 days. On day 13, 0.1ml/bird (10-5.25 ELD50) of vNDV was inoculated in broilers of positive control, COE-1, COE-2, and COE-3 groups intramuscularly. During this study, growth performance, morbidity, and mortality rates of each study group were recorded. The antibody titer against NDV was determined on days 7, 14, 21, 28, and 35. The levels of IgY and IgM were also determined on the 7th, 14th, and 21st days post-SRBC inoculation. On day 33, avian tuberculin was injected between the 1st and 2nd toes of the left side (intradermally) to measure lymphoproliferative responses. On day 35, the phagocytic activity in the blood was assessed through a carbon clearance assay by injecting carbon black ink into the right-wing vein. The visceral organs having gross lesions were also collected for histopathology. Results: The COE significantly improved the growth performance, and lowered the morbidity and mortality rates of broilers. There was a significant rise in antibody titers against NDV and levels of IgY and IgM antibodies against SRBC in COE-supplemented broilers. The lymphoproliferative response and phagocytic activity were also enhanced. Among COE-supplemented groups, the broilers of the COE-3 group showed a significant increase in growth performance and boosted immune defense. Conclusions: Coconut oil extract has the potential to boost the growth performance and immune status of broilers. It can be used effectively as a feed additive and alternative to antibiotics to prevent the spread of infectious poultry pathogens.

2.
Heliyon ; 10(6): e27859, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38533056

Enterotoxaemia is a severe disease caused by Clostridium perfringens and render high mortality and huge economic losses in livestock. However, scanty information and only few cases are reported about the presence and patho-physiology of enterotoxaemia in camels. The bacterium induces per-acute death in animals due to rapid production of different lethal toxins. The necropsy of camels (per-acute = 15, acute = 3) was conducted at 18 outbreaks of enterotoxaemia in camels in the desert area of Bahawalpur region. At necropsy, the serosal surfaces of visceral organs in the abdominal, peritoneal and thoracic cavities were found to have petechiation with severe congestion. Moreover, both the cut-sections of different visceral organs and the histo-pathological analysis revealed the pathological lesions in heart, lungs, kidneys, spleen, small and large intestines. Grossly, the kidneys were severely congested, hyperemic, swollen and softer in consistency. Under the microscope, different sections of kidneys indicated that the convulated and straight tubules were studded with erythrocytes. In the intestines, there were stunting fusion of crypts and villi. Similarly, various histo-pathological ailments were also observed in the heart, lungs and spleen. At blood agar, the collected samples showed beta hemolytic colonies of C. perfringens that appeared as medium sized rods microscopically and stained positively on Gram staining. Multiplex PCR revealed C. perfringens type A (α and ß2 genes) and D (epsilon gene) and the deaths were found to be significantly higher due to C. perfringens type D compared to those by C. perfringens type A. Hence, it has been concluded that enterotoxaemia in camel affects multiple organs and becomes fatal, if occurred due to C. perfringens type D.

3.
Front Pharmacol ; 15: 1325359, 2024.
Article En | MEDLINE | ID: mdl-38449804

Background: Liver disease is a serious health concern in today's world, posing a challenge to both healthcare providers and pharmaceutical companies. Most synthetic drugs and chemicals cause liver damage accounting for approximately 10% of acute hepatitis and 50% of acute liver failure. Purpose: The present study aimed to evaluate the hepato-protective activity of an extract of chicory formulation assisted by silver nanoparticles against carbon tetra chloride (CCl4)-induced hepatic damage in rat's liver. Methods: Rats of the Wistar strain (Rattus norvegicus) were used to test the in vivo hepato-protective efficacy at various doses. Rats were randomly divided into nine groups, each containing six rats. The groups were as follows: first group (control), second group (CCl4), third group, silymarin (20 mg/kg of body weight), fourth group (CCl4+chicory) (1.75 mg/kg of b. wt), fifth group (CCl4 + chicory at the dose of 2.35 mg/kg), sixth group (CCl4 + chicory of 3.25 mg/kg), seventh group (CCl4 +AgNPs 1.75 mg/kg of b. wt.), eighth group (CCl4 + AgNPs 2.35 mg/kg of body weight), and ninth group (CCl4 + AgNPs 3.25 mg/kg of b. wt.). Blood samples were taken 24 h after the last administration (i.e., 30th day). The blood samples were analyzed for different serum enzymes such as ALP (alkaline phosphatase), ALT (alanine transaminase), bilirubin (Blr), triglyceride, and cholesterol. Histology liver sections were performed. Results: Treatment with AgNPs and chicory extract showed significant hepato-protective activity in a dose-dependent manner. In three doses, the chicory extract at a rate of 3.25 mg/kg of body weight significantly reduced elevated levels of biochemical markers in comparison to CCl4-intoxicated rats. Histology of the liver sections from CCl4-treated rats revealed inflammation of hepatocytes, necrosis, cytoplasmic degeneration, vacuolization, and a deformed central vein. The chicory formulation extract exhibited a remarkable recovery percentage in the liver architecture that was higher than the drug (i.e., silymarin). While treatment with AgNPs also repaired the degenerative changes and restored the normal form of the liver, chicory formulation extract possessed more hepato-protective potential as compared to AgNPs by regulating biochemical and histo-pathological parameters. Conclusion: This study can be used as confirmation of the hepato-protective potential of chicory compounds for possible use in the development programs of drugs to treat liver diseases.

4.
ACS Omega ; 8(41): 38111-38117, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37867719

The occurrence of Staphylococcus aureus-induced subclinical mastitis holds significant implications for public health. This specific microorganism possesses a wide array of pathogenic factors that enable it to adhere to, colonize, invade, and infect the host. The objective of the current study was to assess the prevalence of S. aureus, determine antimicrobial resistance patterns, and identify virulence genes of methicillin-resistant S. aureus (MRSA) strains responsible for subclinical mastitis in bovines. A total of 249 milk samples were collected from various farms in the district of Faisalabad. The presence of subclinical mastitis was assessed by using the California mastitis test. Positive milk samples (n = 100) were then subjected to standard microbiological techniques for isolation and identification of S. aureus. Antibiogram analysis was conducted by using the disc diffusion method to assess antimicrobial resistance. For the molecular detection of S. aureus and its virulence genes, the polymerase chain reaction (PCR) was performed with species-specific primers. The overall prevalence of S. aureus was found to be 40% (40/100), which was confirmed through molecular detection of the nuc gene in 40/40 (100%) of samples using PCR. Antimicrobial susceptibility tests indicated the highest susceptibility to vancomycin, sulfamethoxazole/trimethoprim, erythromycin, gentamicin, ciprofloxacin, and chloramphenicol, while the highest resistance rate was observed against tetracycline. Additionally, 30% of samples (12/40) tested positive for methicillin resistance. PCR analysis revealed that 100% of MRSA-tested isolates harbored the mecA and clfA genes. Furthermore, the MRSA isolates showed the presence of pvl, hla, hlb, sec, icaA, icaD, icaB, and icaC genes at rates of 92, 75, 67, 42, 42, 75, 8, and 25%, respectively. These findings underscore the need for stricter aseptic control in dairy farms to prevent disease transmission between animals and ensure the production of safe and uncontaminated food for human consumption.

5.
J Infect Dev Ctries ; 17(8): 1107-1113, 2023 08 31.
Article En | MEDLINE | ID: mdl-37699090

INTRODUCTION: Animal tuberculosis is an infectious, chronic, granulomatous, and debilitating disease affecting animals as well as humans. However, in recent decades, there have been many endemic geographic localities where animal tuberculosis has been identified in wildlife reservoirs, limiting the eradication program in cattle. This study aimed to identify animal tuberculosis in captive zoo animals in Pakistan. METHODOLOGY: In total, 185 morbid zoo animals were brought for postmortem examination at a veterinary postmortem facility. During the macroscopic examination, these animals were thoroughly examined for the presence of suggestive gross lesions of animal tuberculosis (granulomas/tubercles), and the pattern and distribution of these lesions in different organs. The Ziehl-Neelsen (ZN) staining was performed on smears prepared from granulomatous lesions of lung tissue followed by molecular identification of M. bovis and M. tuberculosis DNA using polymerase chain reaction (PCR). RESULTS: The postmortem examination revealed that 8.1% (15/185) of animals had gross tuberculosis lesions on the lungs and lymph nodes. The ZN staining of tissue smears showed 5.40% positivity while M. bovis and M. tuberculosis DNA was identified in 3.78 % and 1.1% of investigated animals, respectively. CONCLUSIONS: The study showed that animal tuberculosis is prevalent among wildlife in Pakistan and it may pose serious public health concerns to the people visiting these zoos and wildlife parks.


Animals, Wild , Mycobacterium , Humans , Animals , Cattle , Pakistan/epidemiology , Autopsy , Lymph Nodes
6.
Microb Pathog ; 150: 104716, 2021 Jan.
Article En | MEDLINE | ID: mdl-33383149

The IL-33/ST2 axis is known to be involved in liver pathologies and IL-33 is over-expressed in mouse hepatitis models. We aimed to investigate the proposed protective effect of IL-33 in murine fulminant hepatitis induced by a Toll like receptor 3 (TLR3) viral mimetic, Poly I:C or by Concanavalin-A (ConA). The Balb/C mice were administered intravenously with ConA (15 mg/kg) or Poly I:C (30 µg/mouse) to induce acute hepatitis along with vehicle control. The recombinant mouse IL-33 (rIL-33) was injected (0.2 µg/mouse) to mice 2 h prior to ConA or Poly I:C injection to check its hepato-protective effects. The gross lesions, level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), histopathology (H&E staining) and levels of IFNγ and TNFα were measured by ELISA. The gross pathological liver injury induced by Poly I:C or ConA was reduced by rIL-33 administration in mice. The levels of AST and ALT were significantly (P ≤ 0.05) higher in mice challenged with Poly I:C or ConA in comparison to control mice. The rIL-33 pre-treated mice in both Poly I:C and ConA challenge groups showed significantly (P ≤ 0.05) lower levels of AST and ALT, and decreased liver injury (parenchymal and per-vascular necrotic areas) in histological liver sections. The soluble levels of TNFα and IFNγ were significantly (P ≤ 0.05) raised in Poly I:C or ConA challenged mice than control mice. The levels of TNFα and IFNγ were significantly reduced (P ≤ 0.05) in rIL-33 pre-treated mice. In conclusion, the exogenous IL-33 administration mitigated liver injury and inflammation (decreased levels of IFNγ and TNFα) in Poly I:C and ConA-induced acute hepatitis in mice.


Hepatitis , Interleukin-33 , Animals , Concanavalin A/toxicity , Hepatitis/prevention & control , Inflammation/drug therapy , Liver , Mice , Poly I
7.
Hepatobiliary Pancreat Dis Int ; 16(3): 245-256, 2017 Jun.
Article En | MEDLINE | ID: mdl-28603092

BACKGROUND: Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions. DATA SOURCES: The data of mouse hepatic models and relevant human liver diseases presented in this review are systematically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS: The hepatotoxic liver injury in mice induced by the metabolites of CCl4, acetaminophen or alcohol represent necrotic cell death with activation of cytochrome pathway, formation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-alpha induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrated the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The alpha-GalCer-induced liver injury was mediated by TNF-alpha. The LPS-induced hepatitis involved TNF-alpha, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-alpha signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune cells and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcoholic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS: The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.


Cell Communication , Chemical and Drug Induced Liver Injury/immunology , Hepatitis, Viral, Animal/immunology , Liver/immunology , Animals , Apoptosis , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytokines/metabolism , Disease Models, Animal , Fas Ligand Protein/metabolism , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/pathology , Hepatitis, Viral, Animal/virology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Liver/metabolism , Liver/pathology , Liver/virology , Mice , Necrosis , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Species Specificity
8.
Pestic Biochem Physiol ; 122: 50-8, 2015 Jul.
Article En | MEDLINE | ID: mdl-26071807

The present study aimed to investigate the deleterious effects of chlorpyrifos (CPF) in experimentally exposed broiler birds. The experiment was carried out on one day old (n = 120) broiler chicks. The CPF was reconstituted in corn oil as vehicle (1 ml/kg) to obtain a final concentration of a single dose to the birds 5, 10 and 20 mg/kg body weight (BW) for fourteen days of the experiment through the stomach tube. The control group was given corn oil 1 ml/kg only. Birds exposed to high dose (20 mg/kg BW) showed signs of toxicity (salivation, lacrimation, gasping, convulsions, frequent defecation and tremors). The birds exposed to 10 and 20 mg/kg showed significantly (P ≤ 0.05) decreased body weight. Significantly (P ≤ 0.05) decreased hematological parameters i.e. total erythrocyte counts, hemoglobin concentration, hematocrit and total leukocyte were observed in the high dosed group as compared to control and other low dosed fed birds. Serum protein and albumin showed a significant (P ≤ 0.05) increase in high dosed CPF fed birds. Non significant results were observed in the case of globulin. The acetylcholinestrease (AChE) activity was significantly (P ≤ 0.05) decreased in blood, serum and plasma in CPF fed birds compared to control birds. In CPF fed birds as compared to control birds we found significantly (P ≤ 0.05) higher levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Necrotic and degenerative changes were observed on histopathological investigations of spleen, kidneys, bursa of Fabricius, thymus and brain tissues in CPF exposed birds. In conclusion the chlorpyrifos induced toxicopathological effects on health biomarkers of broiler chicks.


Biomarkers/blood , Chickens/metabolism , Chlorpyrifos/toxicity , Animals , Body Weight/drug effects , Brain/drug effects , Brain/pathology , Cholinesterases/metabolism , Erythrocyte Count , Hematocrit , Kidney/drug effects , Kidney/pathology , Spleen/drug effects , Spleen/pathology
...