Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Appl Biochem Biotechnol ; 196(1): 145-159, 2024 Jan.
Article En | MEDLINE | ID: mdl-37103734

Chronic myeloid leukemia (CML) as a bone marrow stem cell clonal disease appears from the proliferation of granulocyte cells at all stages of maturation. If the disease diagnosis is not early, patients enter the blastic phase, which decreases their survival rate to 3-6 months. It implies the significance of the early diagnosis of CML. In this study, we introduce a simple array for diagnosis of the K562 cells as the human immortalized myeloid leukemia cell line. The developed aptamer-based biosensor (aptasensor) includes the T2-KK1B10 aptamer strands attached to the surface of mesoporous silica nanoparticles (MSNPs) with the cavities accumulated from rhodamine B and coated by both Ca2+ ions and ATP aptamer. The aptamer-based nanoconjugate can enter the K562 cells through the complexation of the T2-KK1B10 aptamer with the cells. The ATP in the cells and low level of intracellular Ca2+ ion release both the aptamer and ion from the surface of the MSNPs. The liberated rhodamine B results in an increased fluorescence intensity. Fluorescence microscope imaging and flow cytometry histogram display a strong fluorescence emission for the K562 cells (CML cells) exposed to the nanoconjugate in comparison with that for MCF-7 cells. The aptasensor possesses good performance in the blood samples with the advantages of high sensitivity, rapidness, and cost-effectiveness, making it an appropriate tool for the diagnosis of CML disease.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Nanoconjugates/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , K562 Cells , Adenosine Triphosphate
2.
Sci Total Environ ; 912: 168770, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38007131

Recent studies indicate that the Asian Water Tower (AWT) is at risk due to climate change, which can negatively impact water and food security in Asia. However, there is a lack of comprehensive information on lakes' spatial and temporal changes in this region. This information is crucial for understanding the risk magnitude and designing strategies. To fill this research gap, we analyzed 89,480 Landsat images from 1977 ± 2 to 2020 ± 2 to investigate the changes in the size of lakes recharged by the AWT. Our findings showed that out of the 209 lakes larger than 50 km2, 176 (84 %) grew during the wet season and 167 (81 %) during the dry season. 74 % of expanded lakes are located in the Inner Tibetan Plateau (TP) and Tarim basins. The lakes that shrank are found mainly in the Helmand, Indus, and Yangtze basins. Over the entire period, the area of shrinkage (55,077.028 km2 in wet season, 53,986.796 km2 in dry) markedly exceeded expansion (13,000.267 km2 in wet, 11,038.805 km2 in dry), with the drastic decline of the Aral Sea being a major contributor to shrinkage, accounting for 90 % of the total loss. From 1990 ± 2 to 2020 ± 2, alpine lakes mostly expanded, plain lakes mostly shrank, with the opposite trend from 1977 ± 2 to 1990 ± 2. Glacial loss and permafrost thawing under global warming in the Inner TP, Tarim Interior, Syr Darya, and Mekong basins were strongly correlated with lake expansion. However, permafrost discontinuities may prevent significant growth of lakes in the Indus and Ganges basins despite increased recharge. Our findings point to the prominence of the risk the lakes recharged by AWT face. Taking immediate action to manage these risks and adaptation is crucial as the AWT retreats and lake recharges are slowed.

3.
Sci Total Environ ; 849: 157823, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-35931171

Reference evapotranspiration (ETo) is a variable that helps determine atmospheric pressure on living (reference) grass to release water into the atmosphere. For this purpose, four main driving forces: air temperature, air humidity, solar radiation, and wind speed need to be measured over the well-watered reference grass. The relative influence of these driving forces is region and climate-specific, with daily and seasonal variations. A clear understanding of the dynamic interactions of ETo's driving factors can illuminate the water and energy cycles of the earth and assist modelers with more accurate predictions of ETo. In this study, Pearson correlation, mutual information, and random forest feature importance analyses have been used to evaluate the relative importance of meteorological driving forces of ETo in California. To better understand the interrelations of these variables, 1,365,823 daily data samples from 237 standardized weather stations for 36 years have been clustered into homogeneous climatic zones and analyzed. To compensate for the effects of seasonality, feature importance analysis is also conducted on seasonal and monthly clustered data. Moreover, seasonal and annual trends of ETo and its driving factors are investigated for California and homogeneous zones using the Mann-Kendall test. Our findings reveal that for annually clustered data, solar radiation is the most influential driving factor of ETo in California. However, analysis of seasonal and monthly clustered data shows that vapor pressure deficit is the most informative factor during the summer and spring, while solar radiation is more important during the colder seasons. Results of trend analysis don't suggest a consistent monotonic trend for ETo and other variables for different seasons and zones. However, it is shown that agricultural regions with heavy irrigation dependence like the Central Valley are getting warmer and drier, especially during the irrigation season. This can adversely affect the water resources, agriculture industry, and food production of California, and modeling efforts like this can be very informative for future water resources management.


Weather , Wind , Poaceae , Seasons , Temperature , Water
4.
Water Res ; 219: 118584, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35580389

In recent years, the pavement industry has been seeking sustainable development through recycling reclaimed asphalt pavement and reusing other waste materials as replacements for asphalt mixture constituents. Incorporating waste material into asphalt mixture and the presence of pollutants such as exhaust fumes and gasoline due to vehicle traffic may lead to contaminants leaching from asphalt pavements to underlying soil layers and groundwater aquifers, posing serious risks to ecosystems and the environment. To cast light on contaminant leaching from asphalt pavements, this article presents a comprehensive review of the literature that is divided into four research areas: evaluation of leaching measurement methods, leaching from recycled asphalt materials, leaching characteristics of porous asphalt pavements, and waste-modified asphalt mixtures. Moreover, a critical discussion of bibliometric data, literature content and knowledge gaps in this domain is provided to help highway agencies and environmental scientists address contaminant leaching from asphalt pavements. Finally, some potential research directions are suggested for future research works.


Construction Materials , Ecosystem , Hydrocarbons , Porosity , Waste Products
5.
Environ Sci Technol ; 53(7): 3757-3763, 2019 04 02.
Article En | MEDLINE | ID: mdl-30821445

This work provides an alternative solution to the challenge of battery recycling via the upcycling of spent lithium cobalt oxide (LCO) as a new promising solid lubricant additive. An advanced solid lubricant mixture of graphene, Aremco binder, and recycled LCO was formulated into a spray with the use of excess volatile organic solvent. Numerous flat steel disks were spray-coated with the new lubricant formulation and naturally dried followed by curing at 180 °C. When tested on a ball-on-disk up to 230 m in distance, the composite new solid lubricant reduced the coefficient of friction (COF) by 85% between two steel surfaces compared to unlubricated surfaces under a constant 1 GPa Hertzian pressure in an ambient environment. The tribofilm composition, particle size, and type of contact are identified as important parameters in the improvement of the COF. Scanning electron microscopy was used to study its morphology, and energy dispersive X-ray spectroscopy was used to analyze the composition of pristine and tested tribofilms. Upcycled spent low value LCO powder was used as a lubricant additive in tribology for the first time with exceptional lubricious properties.


Cobalt , Lithium , Electrodes , Lubricants , Oxides
6.
Comput Biol Med ; 66: 179-89, 2015 Nov 01.
Article En | MEDLINE | ID: mdl-26414377

A computational model of flagellar motility is presented using the finite element method. Two-dimensional traveling waves of finite amplitude are propagated down the flagellum and the swimmer is propelled through a viscous fluid according to Newto's second law of motion. Incompressible Navier-Stokes equations are solved on a triangular moving mesh and arbitrary Lagrangian-Eulerian formulation is employed to accommodate the deforming boundaries. The results from the present study are validated against the data available in the literature and close agreement with previous works is found. The effects of wave parameters as well as head morphology on the swimming characteristics are studied for different swimming conditions. We have found that the swimming velocities are linear functions of finite amplitudes and that the rate of work is independent of the channel height for large amplitudes. Furthermore, we have also demonstrated that for the range of wave parameters that are often encountered in human sperm motility studies, the propulsive velocity versus the wavelength exhibits dissimilar trends for different channel heights. Various head configurations were analyzed and it is also observed that wall proximity amplifies the effects induced by different head shapes. By taking non-Newtonian fluids into account, we present new efficiency analyzes through which we have found that the model microorganism swims much more efficiently in shear-thinning fluids.


Flagella/physiology , Sperm Motility , Spermatozoa/physiology , Biomechanical Phenomena , Computer Simulation , Finite Element Analysis , Humans , Male , Movement , Oscillometry , Viscosity
...