Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Transl Cancer Res ; 12(10): 2682-2692, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37969399

RESUMEN

Background: Mucinous ovarian carcinomas (MOCs) are rare ovarian tumours accounting for 3% of all epithelial ovarian carcinomas (EOCs). They are either expansile or infiltrative, based on the tumour's histological pattern of invasion. MOCs have a distinct molecular profile, natural history, chemo-sensitivity, and prognosis compared to other EOCs. The aim of this study was to describe patient and tumour characteristics, as well as survival outcomes of expansile and infiltrative primary MOCs. Methods: This was a retrospective cohort study conducted at a tertiary cancer centre. Patients had surgery for primary MOC between Jul 1, 2010 and Oct 28, 2022. All patients discussed at the Oxford multidisciplinary team (MDT) meeting with a diagnosis of MOC were included. We excluded patients with mucinous metastatic carcinoma (MMC), dual histological diagnoses, those who died before treatment was initiated, and patients with incomplete records. Results: A total of 47 patients were identified and 14 were excluded. Out of the remaining 33 MOCs, 23 (70.6%) were expansile and 10 (30.4%) were infiltrative. The median follow-up was 37 months (95% CI: 14.1-69.8). Patients with infiltrative tumours were older than those with expansile tumours (median age 62 vs. 55 years, P=0.049). Infiltrative tumours were diagnosed at a more advanced International Federation of Gynaecology and Obstetrics (FIGO) stage compared to expansile tumours: FIGO stage II/III 50% vs. 8.2% (P=0.002). We found paired-box gene 8 (PAX8) more frequently expressed in expansile tumours (75% vs. 37.5%, P=0.099). Adjuvant treatment was administered in 50% of patients with infiltrative disease, compared to only 13% of those with expansile disease (P=0.036). 80% of patients who have relapsed had received adjuvant chemotherapy, compared to 17.2% of patients without relapse (P=0.012). At 3 years, there was a statistically significant difference in progression-free survival (PFS) (94.7% vs. 65.6%, P=0.02) between the expansile and infiltrative groups, but no difference in overall survival (OS) (88.8% vs. 90%, P=0.875). Conclusions: Patients with infiltrative tumours were older, more likely to have bilateral tumours and more likely to have an advanced FIGO stage at diagnosis. Adjuvant treatment was more likely to be administered to patients with infiltrative tumours, however, this did not prevent relapse. PFS at 3 years was significantly higher in patients with expansile tumours. PAX8 was more frequently expressed by expansile tumours.

3.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917586

RESUMEN

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Asunto(s)
Trompas Uterinas , beta Catenina , Femenino , Humanos , beta Catenina/metabolismo , Trompas Uterinas/metabolismo , Transcriptoma/genética , Células Madre/metabolismo , Vía de Señalización Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
4.
BMC Bioinformatics ; 24(1): 453, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036971

RESUMEN

BACKGROUND: Genomic insights in settings where tumour sample sizes are limited to just hundreds or even tens of cells hold great clinical potential, but also present significant technical challenges. We previously developed the DigiPico sequencing platform to accurately identify somatic mutations from such samples. RESULTS: Here, we complete this genomic characterisation with copy number. We present a novel protocol, PicoCNV, to call allele-specific somatic copy number alterations from picogram quantities of tumour DNA. We find that PicoCNV provides exactly accurate copy number in 84% of the genome for even the smallest samples, and demonstrate its clinical potential in maintenance therapy. CONCLUSIONS: PicoCNV complements our existing platform, allowing for accurate and comprehensive genomic characterisations of cancers in settings where only microscopic samples are available.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Genoma , Genómica , Neoplasias/genética , Neoplasias/patología , ADN de Neoplasias/genética
5.
Front Cell Dev Biol ; 10: 869531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693931

RESUMEN

Increasing evidence supports the notion that filamentous actin (F-actin) and globular actin exist in the nuclei of somatic cells, and are involved in chromatin remodeling, gene transcription regulation and DNA damage repair. However, the underlying mechanisms of how nuclear F-actin are polymerized in cells remain incompletely understood. Here, we identify potential kinase targets that participate in nuclear F-actin polymerization in ovarian cancer cells using small-molecule inhibitor library screening in combination with a deep learning approach. The analysis of the targets of the inhibitors used in this study suggest that the PI3K-AKT pathway are involved in regulating nuclear F-actin organization in ovarian cancer cells. Our work lays the foundation for uncovering the important roles of nuclear F-actin in the context of ovarian cancer, and for understanding how nuclear F-actin structures are organized.

8.
Cancer Res ; 82(1): 169-176, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34737212

RESUMEN

The growing use of neoadjuvant chemotherapy to treat advanced stage high-grade serous ovarian cancer (HGSOC) creates an opportunity to better understand chemotherapy-induced mutational and gene expression changes. Here we performed a cohort study including 34 patients with advanced stage IIIC or IV HGSOC to assess changes in the tumor genome and transcriptome in women receiving neoadjuvant chemotherapy. RNA sequencing and panel DNA sequencing of 596 cancer-related genes was performed on paired formalin-fixed paraffin-embedded specimens collected before and after chemotherapy, and differentially expressed genes (DEG) and copy-number variations (CNV) in pre- and post-chemotherapy samples were identified. Following tissue and sequencing quality control, the final patient cohort consisted of 32 paired DNA and 20 paired RNA samples. Genomic analysis of paired samples did not reveal any recurrent chemotherapy-induced mutations. Gene expression analyses found that most DEGs were upregulated by chemotherapy, primarily in the chemotherapy-resistant specimens. AP-1 transcription factor family genes (FOS, FOSB, FRA-1) were particularly upregulated in chemotherapy-resistant samples. CNV analysis identified recurrent 11q23.1 amplification, which encompasses SIK2. In vitro, combined treatment with AP-1 or SIK2 inhibitors with carboplatin or paclitaxel demonstrated synergistic effects. These data suggest that AP-1 activity and SIK2 copy-number amplification are induced by chemotherapy and may represent mechanisms by which chemotherapy resistance evolves in HGSOC. AP-1 and SIK2 are druggable targets with available small molecule inhibitors and represent potential targets to circumvent chemotherapy resistance. SIGNIFICANCE: Genomic and transcriptomic analyses identify increased AP-1 activity and SIK2 copy-number amplifications in resistant ovarian cancer following neoadjuvant chemotherapy, uncovering synergistic effects of AP-1 and SIK2 inhibitors with chemotherapy.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Terapia Neoadyuvante/métodos , Neoplasias Ováricas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología
9.
Dis Model Mech ; 14(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34160006

RESUMEN

Müllerian duct anomalies (MDAs) are developmental disorders of the Müllerian duct, the embryonic anlage of most of the female reproductive tract. The prevalence of MDAs is 6.7% in the general female population and 16.7% in women who exhibit recurrent miscarriages. Individuals affected by these anomalies suffer from high rates of infertility, first-trimester pregnancy losses, premature labour, placental retention, foetal growth retardation and foetal malpresentations. The aetiology of MDAs is complex and heterogeneous, displaying a range of clinical pictures that generally lack a direct genotype-phenotype correlation. De novo and familial cases sharing the same genomic lesions have been reported. The familial cases follow an autosomal-dominant inheritance, with reduced penetrance and variable expressivity. Furthermore, few genetic factors and molecular pathways underpinning Müllerian development and dysregulations causing MDAs have been identified. The current knowledge in this field predominantly derives from loss-of-function experiments in mouse and chicken models, as well as from human genetic association studies using traditional approaches, such as microarrays and Sanger sequencing, limiting the discovery of causal factors to few genetic entities from the coding genome. In this Review, we summarise the current state of the field, discuss limitations in the number of studies and patient samples that have stalled progress, and review how the development of new technologies provides a unique opportunity to overcome these limitations. Furthermore, we discuss how these new technologies can improve functional validation of potential causative alterations in MDAs.


Asunto(s)
Conductos Paramesonéfricos/anomalías , Fenotipo , Femenino , Estudios de Asociación Genética , Humanos , Embarazo
10.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945502

RESUMEN

Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.


Asunto(s)
Adipocitos/metabolismo , Carcinoma Epitelial de Ovario/genética , Transición Epitelial-Mesenquimal/genética , Neoplasia Residual/genética , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/genética , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/administración & dosificación , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Procedimientos Quirúrgicos de Citorreducción , Ácidos Grasos/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasia Residual/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Oxidación-Reducción , Paclitaxel/administración & dosificación , Transcriptoma
11.
Nat Commun ; 12(1): 618, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504799

RESUMEN

Although various methods have been developed for sequencing cytosine modifications, it is still challenging for specific and quantitative sequencing of individual modification at base-resolution. For example, to obtain both true 5-methylcytosine (5mC) and true 5-hydroxymethylcytosine (5hmC) information, the two major epigenetic modifications, it usually requires subtraction of two methods, which increases noise and requires high sequencing depth. Recently, we developed TET-assisted pyridine borane sequencing (TAPS) for bisulfite-free direct sequencing of 5mC and 5hmC. Here we demonstrate that two sister methods, TAPSß and chemical-assisted pyridine borane sequencing (CAPS), can be effectively used for subtraction-free and specific whole-genome sequencing of 5mC and 5hmC, respectively. We also demonstrate pyridine borane sequencing (PS) for whole-genome profiling of 5-formylcytosine and 5-carboxylcytosine, the further oxidized derivatives of 5mC and 5hmC. This work completes the set of versatile borane reduction chemistry-based methods as a comprehensive toolkit for direct and quantitative sequencing of all four cytosine epigenetic modifications.


Asunto(s)
5-Metilcitosina/metabolismo , Análisis de Secuencia de ADN , Sulfitos/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Secuencia de Bases , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Oxidación-Reducción , Piridinas/metabolismo
14.
Nat Immunol ; 21(10): 1232-1243, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929275

RESUMEN

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.


Asunto(s)
Antígenos CD2/metabolismo , Antígenos CD58/metabolismo , Linfocitos T CD8-positivos/metabolismo , Sinapsis Inmunológicas/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Adhesión Celular , Células Cultivadas , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Unión Proteica , Receptor Cross-Talk , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Análisis de la Célula Individual
15.
Cancer Cell ; 37(2): 226-242.e7, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32049047

RESUMEN

The inter-differentiation between cell states promotes cancer cell survival under stress and fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience but its quantification is confounded by genetic heterogeneity. Here we show that NGH in serous ovarian cancer (SOC) can be accurately measured when informed by the molecular signatures of the normal fallopian tube epithelium (FTE) cells, the cells of origin of SOC. Surveying the transcriptomes of ∼6,000 FTE cells, predominantly from non-ovarian cancer patients, identified 6 FTE subtypes. We used subtype signatures to deconvolute SOC expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification of ∼1,700 tumors robustly correlated with survival. Our findings lay the foundation for accurate prognostic and therapeutic stratification of SOC.


Asunto(s)
Células Epiteliales/patología , Neoplasias de las Trompas Uterinas/metabolismo , Trompas Uterinas/patología , Neoplasias Ováricas/patología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Epitelio/metabolismo , Epitelio/patología , Neoplasias de las Trompas Uterinas/genética , Neoplasias de las Trompas Uterinas/patología , Trompas Uterinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Heterogeneidad Genética , Humanos , Neoplasias Ováricas/metabolismo
16.
Oncogene ; 38(16): 2885-2898, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30568223

RESUMEN

Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.


Asunto(s)
Tejido Adiposo/patología , Neoplasias Ováricas/patología , Microambiente Tumoral/fisiología , Femenino , Humanos , Epiplón/patología , Tropismo/fisiología
17.
Clin Cancer Res ; 24(20): 5072-5084, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30084832

RESUMEN

Purpose: Most patients with ovarian cancer receive paclitaxel chemotherapy, but less than half respond. Pre-treatment microtubule stability correlates with paclitaxel response in ovarian cancer cell lines. Microtubule stability can be increased by depletion of individual kinases. As microtubule stability can be regulated by phosphorylation of microtubule-associated proteins (MAPs), we reasoned that depletion of pairs of kinases that regulate phosphorylation of MAPs could induce microtubule stabilization and paclitaxel sensitization.Experimental Design: Fourteen kinases known to regulate paclitaxel sensitivity were depleted individually in 12 well-characterized ovarian cancer cell lines before measuring proliferation in the presence or absence of paclitaxel. Similar studies were performed by depleting all possible pairs of kinases in six ovarian cancer cell lines. Pairs that enhanced paclitaxel sensitivity across multiple cell lines were studied in depth in cell culture and in two xenograft models.Results: Transfection of siRNA against 10 of the 14 kinases enhanced paclitaxel sensitivity in at least six of 12 cell lines. Dual knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity more than silencing single kinases. Sequential knockdown was superior to concurrent knockdown. Dual silencing of IKBKB/STK39 or EDN2/TBK1 stabilized microtubules by inhibiting phosphorylation of p38 and MAP4, inducing apoptosis and blocking cell cycle more effectively than silencing individual kinases. Knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity in two ovarian xenograft models.Conclusions: Sequential knockdown of dual kinases increased microtubule stability by decreasing p38-mediated phosphorylation of MAP4 and enhanced response to paclitaxel in ovarian cancer cell lines and xenografts, suggesting a strategy to improve primary therapy. Clin Cancer Res; 24(20); 5072-84. ©2018 AACR.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Proteínas Quinasas/genética , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Ciclo Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Genes BRCA1 , Genes BRCA2 , Genes p53 , Humanos , Ratones , Mutación , Neoplasias Ováricas/tratamiento farmacológico , Fosforilación , ARN Interferente Pequeño/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Development ; 145(4)2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386245

RESUMEN

CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Epigenómica/métodos , Ingeniería Genética/métodos , Animales , Embrión de Pollo , Pollos/genética , Clonación de Organismos , Electroporación , Técnica del Anticuerpo Fluorescente , Expresión Génica , Hibridación in Situ , Reacción en Cadena de la Polimerasa
19.
Nat Commun ; 9(1): 476, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396402

RESUMEN

Though used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Proteínas Tirosina Quinasas/genética , Tratamiento con ARN de Interferencia , Moduladores de Tubulina/farmacología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/ultraestructura , Fosforilación/efectos de los fármacos , Fosforilación/genética , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño
20.
Cell Rep ; 20(11): 2639-2653, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903044

RESUMEN

Synthetic receptors provide a powerful experimental tool for generation of designer cells capable of monitoring the environment, sensing specific input signals, and executing diverse custom response programs. To advance the promise of cellular engineering, we have developed a class of chimeric receptors that integrate a highly programmable and portable nuclease-deficient CRISPR/Cas9 (dCas9) signal transduction module. We demonstrate that the core dCas9 synthetic receptor (dCas9-synR) architecture can be readily adapted to various classes of native ectodomain scaffolds, linking their natural inputs with orthogonal output functions. Importantly, these receptors achieved stringent OFF/ON state transition characteristics, showed agonist-mediated dose-dependent activation, and could be programmed to couple specific disease markers with diverse, therapeutically relevant multi-gene expression circuits. The modular dCas9-synR platform developed here provides a generalizable blueprint for designing next generations of synthetic receptors, which will enable the implementation of highly complex combinatorial functions in cellular engineering.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética , Transducción de Señal , Membrana Celular/metabolismo , Expresión Génica , Células HEK293 , Humanos , Modelos Biológicos , Péptido Hidrolasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA