Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Front Chem ; 12: 1380523, 2024.
Article En | MEDLINE | ID: mdl-38694406

Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-threatening disease resulting from impaired glucose homeostasis. The inhibition of glucosidase, particularly α-glucosidase, could serve as an effective methodology in treating diabetes. Attributed to the catalytic function of glucosidase, the present research focuses on the synthesis of sulfonamide-based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening against α-glucosidase. The envisaged structures of prepared compounds were confirmed through NMR and FTIR spectroscopy and mass spectrometry. All compounds were found to be more potent against α-glucosidase than the standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from 1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the intermolecular interactions of most potent compounds (5a and 5b), with active site residues reflecting the importance of pyrazole and sulfonamide moieties. This interaction pattern clearly manifests various structure-activity relationships, while the docking results correspond to the IC50 values of tested compounds. Hence, recent investigation reveals the medicinal significance of sulfonamide-clubbed pyrazole derivatives as prospective therapeutic candidates for treating type 2 diabetes mellitus (T2DM).

2.
ACS Omega ; 9(13): 15603-15614, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38585118

In the present work, 2-imino-1,3-thiazolines featuring highly fluorinated fragments were synthesized through a straightforward cyclization of diversely substituted thioureas with 2-bromo-1-(4-fluorophenyl)ethan-1-one. The target compounds were obtained in good yields, and structures were established by FTIR and 1H- and 13C NMR spectroscopic methods. The in vitro biological assay revealed that all the compounds significantly obstruct the α-glucosidase. Compound 6d (3-fluoro-N-(3-(2-fluorophenyl)-4-(4-fluorophenyl)thiazol-2(3H)-ylidene)benzamide) showed the highest antidiabetic potential with an IC50 value of 1.47 ± 0.05 µM. In addition, computational analysis revealed the binding energy of -11.1 kcal/mol for 6d which was lower than the positive standard, acarbose (-7.9 kcal/mol). Several intermolecular interactions between the active site residues and 6d highlight the significance of 2-imino-1,3-thiazoline core in attaining the potent efficacy and making these compounds a valuable pharmacophore in drug discovery.

3.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Article En | MEDLINE | ID: mdl-38368975

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Amantadine , Thiourea , Humans , Thiourea/pharmacology , Thiourea/chemistry , HEK293 Cells , Molecular Docking Simulation , Amantadine/pharmacology , DNA/chemistry , Pancreatic Elastase
4.
RSC Adv ; 14(2): 1018-1033, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38174269

In the present work, a small library of novel pyrazolinyl-acyl thiourea (5a-j) was designed and synthesized through a multistep sequence and the synthesized compounds were screened for their antifungal, antibacterial and antioxidant activities as well as urease, amylase and α-glucosidase inhibitory activities. The synthesized series (5a-o) was characterized using a combination of spectroscopic techniques, including FT-IR, 1H NMR and 13C NMR. All compounds (5a-j) were found to have significant potency against urease, α-glucosidase, α-amylase, and DPPH. The synthesized compounds were also screened for potential antibacterial and anti-fungal inhibition activities. IC50 values for all the prepared compounds for urease, α-glucosidase, amylase, and DPPH inhibition were determined and derivatives 5b and 5g were found to be the most potent urease inhibitors with IC50 values of 54.2 ± 0.32 and 43.6 ± 0.25 µM, respectively. Whilst compound 5b (IC50 = 68.3 ± 0.11 µM) is a potent α-glucosidase inhibitor, compound 5f (90.3 ± 1.08 µM) is a potent amylase inhibitor and compound 5b (103.4 ± 1.15 µM) is a potent antioxidant. The different substitutions on the phenyl ring were the basis for structure-activity relationship (SAR) study. The molecular docking study was performed for the confirmation of binding interactions.

5.
RSC Adv ; 13(36): 24988-25001, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37614781

A series of ten novel compounds were synthesized by incorporating a 1,3 thiazole core into amantadine and their structures were validated using different analytical and spectral methods such as FTIR, EI-MS, 1H NMR, and 13C NMR. The antibacterial and enzyme inhibitory properties of these newly synthesized compounds were evaluated. Remarkably, the compounds exhibited significant antibacterial activity against Escherichia coli and Bacillus subtilis. Additionally, the in vitro inhibitory activities of the synthesized compounds, against α-amylase, α-glucosidase, and urease were investigated. Among the tested compounds, compound 6d demonstrated potent and selective inhibition of α-amylase IC50 = 97.37 ± 1.52 µM, while acarbose was used as positive control and exhibited IC50 = 5.17 ± 0.25 µM. Compound 6d and 6e exhibited prominent inhibition against α-glucosidase IC50 = 38.73 ± 0.80 µM and 41.63 ± 0.26 µM respectively. Furthermore, compound 6d inhibited urease with exceptional efficacy IC50 = 32.76 µM, while positive control thiourea showed more prominent activity having IC50 = 1.334 µM. Molecular docking studies disclosed the binding mechanism and affinity of these new inhibitors within the binding sites of various amino acids. To investigate the association between molecular structural characteristics and inhibitory actions of synthesized derivatives, preliminary structure-activity relationship (SAR) studies were performed. These findings indicated that compounds 6a, 6c, 6d and 6e are potential candidates for hit-to-lead follow-up in the drug-discovery process for treating diabetes and hyperglycemia.

6.
Molecules ; 28(6)2023 Mar 16.
Article En | MEDLINE | ID: mdl-36985680

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Brain Neoplasms , Urease , Humans , Molecular Docking Simulation , HEK293 Cells , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Thiourea/chemistry , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
7.
Bioorg Chem ; 131: 106302, 2023 02.
Article En | MEDLINE | ID: mdl-36528921

The current studies mainly demonstrate the coumarin based azomethine-clubbed thiazoles synthesis and their in-vitro evaluation for the first time against α-glucosidase. Due to the catalytic role of α-glucosidase, it has become a precise target for the treatment of type diabetes mellitus (T2DM). The high rate of prevalence of diabetes and its associated health related problems led us to scrutinize the anti-diabetic capability of the synthesized thiazole derivatives (6a-6k). The anticipated structures of prepared compounds were confirmed through FT-IR and NMR spectroscopic methods. All the compounds showed several times potent activity than the standard drug, acarbose (IC50 = 873.34 ± 1.67 µM) against α-glucosidase with IC50 values in range of 0.87 ± 0.02-322.61 ± 1.14 µM. The compound 6k displayed the highest anti-diabetic activity (IC50 = 1.88 ± 0.03 µM). Kinetic study revealed that these are competitive inhibitors for α-glucosidase. The mode of binding of the synthesized molecules were further evaluated by molecular docking, which reflects the importance of azomethine group in protein-ligand interaction. The docking scores are complementary with the IC50 values of compounds while the interaction pattern of the compounds clearly demonstrates their structure-activity relationship. Current study reported medicinal importance of thiazole derivative as future drug candidates for the management of Type 2 Diabetes Mellitus (T2DM).


Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Diabetes Mellitus, Type 2/drug therapy , alpha-Glucosidases/metabolism , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Kinetics , Thiazoles/chemistry
8.
Biomolecules ; 12(11)2022 11 16.
Article En | MEDLINE | ID: mdl-36421710

Carbonic anhydrases (CA), having Zn2+ metal atoms, are responsible for the catalysis of CO2 and water to bicarbonate and protons. Any abnormality in the functioning of these enzymes may lead to morbidities such as glaucoma and different types of cancers including brain, renal and pancreatic carcinomas. To cope with the lack of presence of a promising therapeutic agent against these cancers, searching for an efficient and suitable carbonic anhydrase inhibitor is crucial. In the current study, ten novel 3-ethylaniline hybrid imino-thiazolidinones were synthesized and characterized by FTIR, NMR (1H, 13C), and mass spectrometry. Synthesis was carried out by diethyl but-2-ynedioate cyclization and different acyl thiourea substitutions of 3-ethyl amine. The CA (II) enzyme inhibition profile for all synthesized derivatives was determined. It was observed that compound 6e demonstrated highest inhibition of CA-II with an IC50 value of 1.545 ± 0.016 µM. In order to explore the pharmacophoric properties and develop structure activity relationship, in silico screening was performed. In silico investigations included density functional theory (DFT) studies, pharmacophore-guided model development, molecular docking, molecular dynamic (MD) simulations, and prediction of drug likeness scores. DFT investigations provided insight into the electronic characteristics of compounds, while molecular docking determined the binding orientation of derivatives within the CA-II active site. Compounds 6a, 6e, and 6g had a reactive profile and generated stable protein-ligand interactions with respective docking scores of -6.12, -6.99, and -6.76 kcal/mol. MD simulations were used to evaluate the stability of the top-ranked complex. In addition, pharmacophore-guided modeling demonstrated that compound 6e produced the best pharmacophore model (HHAAARR) compared to standard brinzolamide. In vitro and in silico investigations anticipated that compound 6e would be an inhibitor of carbonic anhydrase II with high efficacy. Compound 6e may serve as a potential lead for future synthesis that can be investigated at the molecular level, and additional in vivo studies are strongly encouraged.


Carbonic Anhydrase II , Neoplasms , Humans , Molecular Docking Simulation , Kinetics , Carbonic Anhydrase Inhibitors/pharmacology
9.
RSC Adv ; 12(19): 11974-11991, 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35481107

Porcine Pancreatic Elastase (PPE) is a serine protease that is homologous to trypsin and chymotrypsin that are involved in various pathologies like inflammatory disease, Chronic Obstructive Pulmonary Disease (COPD), acute respiratory distress syndrome, cystic fibrosis, and atherosclerosis. PPE if remained uninhibited would lead to digestion of important connective tissue. We developed new structurally diverse series of adamantyl-iminothiazolidinone hybrids to divulge elastase inhibition assay. To identify potent derivatives, in silico screening was conducted and in vitro studies disclosed that the compounds 5a, 5f, 5g, and 5h showed excellent binding energies and low IC50 values. In silico studies including molecular docking, DFT studies (using the B3LYP/SVP basis set in the gas phase) drug likeness scores and molecular dynamic simulation studies were conducted to evaluate protein-ligand interactions and to determine the stability of top ranked conformation. In silico studies further supported the results of in vitro experiments and suggest these derivatives as novel inhibitors of elastase enzyme.

10.
J Biomol Struct Dyn ; 40(10): 4419-4428, 2022 07.
Article En | MEDLINE | ID: mdl-33342351

Tyrosinase is a multi-copper enzyme found in plants, animals and microorganisms, plays a critical role in the melanogenesis and browning process critical to cosmetics and food industries. Many natural, semi-synthetic and synthetic inhibitors have been discovered. To this end, a small library of symmetrical Bis-Azo-Azamethine hybrids 5a-j was synthesized and characterized through spectroscopic and analytical data and explored for mushroom tyrosinase and free radical scavenging activity. All of the molecules 5a-j explicated better potential compared to the standard Kojic acid. On the whole, compound 5i having IC50 value 0.002 ± 0.004 µM was found to be the most potent derivative. The Kinetic studies were performed for 5i and indicating the mode of inhibition in a competitive manner. Structure Activity Relationship (SAR) analysis and docking studies were carried out. Thus compound 5i bearing bulky naphthyl groups was most potent and, The molecular docking indicated formation of two hydrogen bonds with Arg268 and one hydrophobic interaction with Glu322. The carbonyl oxygen of 5i interacts with Arg268 and form two hydrogen bonds having lengths 2.44 and 2.62 Å, respectively. In the same way, compounds 5a-j were appraised for DPPH free radical scavenging ability and five of them 5d, 5e, 5h, 5i and 5j were found to exhibit higher % scavenging potency compared with vitamin C, as the standard. Interesting compound 5i was again the most potent in the series. The current investigation points towards the role of naphthyl group in design of new inhibitors of melanogenesis and the antioxidants with improved efficacy.Communicated by Ramaswamy H. Sarma.


Agaricales , Monophenol Monooxygenase , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radicals , Kinetics , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship
11.
Molecules ; 26(23)2021 Nov 25.
Article En | MEDLINE | ID: mdl-34885728

This article describes the design and synthesis of a series of novel amantadine-thiourea conjugates (3a-j) as Jack bean urease inhibitors. The synthesized hybrids were assayed for their in vitro urease inhibition. Accordingly, N-(adamantan-1-ylcarbamothioyl)octanamide (3j) possessing a 7-carbon alkyl chain showed excellent activity with IC50 value 0.0085 ± 0.0011 µM indicating that the long alkyl chain plays a vital role in enzyme inhibition. Whilst N-(adamantan-1-ylcarbamothioyl)-2-chlorobenzamide (3g) possessing a 2-chlorophenyl substitution was the next most efficient compound belonging to the aryl series with IC50 value of 0.0087 ± 0.001 µM. The kinetic mechanism analyzed by Lineweaver-Burk plots revealed the non-competitive mode of inhibition for compound 3j. Moreover, in silico molecular docking against target protein (PDBID 4H9M) indicated that most of the synthesized compounds exhibit good binding affinity with protein. The compound 3j forms two hydrogen bonds with amino acid residue VAL391 having a binding distance of 1.858 Å and 2.240 Å. The interaction of 3j with amino acid residue located outside the catalytic site showed its non-competitive mode of inhibition. Based upon these results, it is anticipated that compound 3j may serve as a lead structure for the design of more potent urease inhibitors.


Enzyme Inhibitors/chemistry , Helicobacter Infections/drug therapy , Structure-Activity Relationship , Urease/chemistry , Amantadine/analogs & derivatives , Amantadine/chemistry , Amantadine/pharmacology , Catalytic Domain/drug effects , Enzyme Inhibitors/pharmacology , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Helicobacter pylori/pathogenicity , Humans , Hydrogen Bonding/drug effects , Kinetics , Molecular Docking Simulation , Molecular Structure , Thiourea/chemistry , Thiourea/pharmacology , Urease/antagonists & inhibitors
...