Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(6): 1600-1620, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38842483

RESUMEN

Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.


Asunto(s)
Inteligencia Artificial , Técnicas Biosensibles , Nanoestructuras , Técnicas Biosensibles/métodos , Nanoestructuras/química , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética
2.
Chemosphere ; 343: 140223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734509

RESUMEN

Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.

3.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444824

RESUMEN

This paper reports the optical properties of zinc oxide nanofilm fabricated by using organic natural products from Salvia officinalis leaves (SOL) extract and discusses the effect of the nanocrystal (NC) structure (nanoyarn and nanomat-like structure) on nanofilm optical properties. The surface-active layer of the nanofilm of ZnO nanoparticles (ZnO NPs) was passivated with natural organic SOL leaves hydrothermally, then accumulated on zinc oxide nanorods (ZnO NRs). The nanofilms were fabricated (with and without PEO) on glass substrate (at 85 °C for 16 h) via chemical solution deposition (CSD). The samples were characterized by UV-vis, PL, FESEM, XRD, and TEM measurements. TEM micrographs confirmed the nucleation of ZnO NPs around 4 nm and the size distribution at 1.2 nm of ZnO QDs as an influence of the quantum confinement effect (QCE). The nanofilms fabricated with SOL surfactant (which works as a capping agent for ZnO NPs) represent distinct optoelectronic properties when compared to bulk ZnO. FESEM images of the nanofilms revealed nanoyarn and nanomat-like structures resembling morphologies. The XRD patterns of the samples exhibited the existence of ZnO nanocrystallites (ZnO NCs) with (100), (002), and (101) growth planes. The nanofilms fabricated represented a distinct optical property through absorption and broad emission, as the optical energy band gap reduced as the nanofilms annealed (at 120 ℃). Based on the obtained results, it was established that phytochemicals extracted from organic natural SOL leaves have a distinct influence on zoic oxide nanofilm fabrication, which may be useful for visible light spectrum trapping. The nanofilms can be used in photovoltaic solar cell applications.

4.
Materials (Basel) ; 16(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36902983

RESUMEN

Herein, we investigated the applicability of thick film and bulk disk forms of aluminum-doped zinc oxide (AZO) for low-dose X-ray radiation dosimetry using the extended gate field effect transistor (EGFET) configuration. The samples were fabricated using the chemical bath deposition (CBD) technique. A thick film of AZO was deposited on a glass substrate, while the bulk disk form was prepared by pressing the collected powders. The prepared samples were characterized via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) to determine the crystallinity and surface morphology. The analyses show that the samples are crystalline and comprise nanosheets of varying sizes. The EGFET devices were exposed to different X-ray radiation doses, then characterized by measuring the I-V characteristics pre- and post-irradiation. The measurements revealed an increase in the values of drain-source currents with radiation doses. To study the detection efficiency of the device, various bias voltages were also tested for the linear and saturation regimes. Performance parameters of the devices, such as sensitivity to X-radiation exposure and different gate bias voltage, were found to depend highly on the device geometry. The bulk disk type appears to be more radiation-sensitive than the AZO thick film. Furthermore, boosting the bias voltage increased the sensitivity of both devices.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36678106

RESUMEN

The applications of silver nanowires (AgNWs) are clearly relevant to their purity and morphology. Therefore, the synthesis parameters should be precisely adjusted in order to obtain AgNWs with a high aspect ratio. Consequently, controlling the reaction time versus the reaction temperature of the AgNWs is crucial to synthesize AgNWs with a high crystallinity and is important in fabricating optoelectronic devices. In this work, we tracked the morphological alterations of AgNWs during the growth process in order to determine the optimal reaction time and temperature. Thus, here, the UV-Vis absorption spectra were used to investigate how the reaction time varies with the temperature. The reaction was conducted at five different temperatures, 140-180 °C. As a result, an equation was developed to describe the relationship between them and to calculate the reaction time at any given reaction temperature. It was observed that the average diameter of the NWs was temperature-dependent and had a minimum value of 23 nm at a reaction temperature of 150 °C. A significant purification technique was conducted for the final product at a reaction temperature of 150 °C with two different speeds in the centrifuge to remove the heavy and light by-products. Based on these qualities, a AgNWs-based porous Si (AgNWs/P-Si) device was fabricated, and current-time pulsing was achieved using an ultra-violet (UV) irradiation of a 375 nm wavelength at four bias voltages of 1 V, 2 V, 3 V, and 4 V. We obtained a high level of sensitivity and detectivity with the values of 2247.49% and 2.89 × 1012 Jones, respectively. The photocurrent increased from the µA range in the P-Si to the mA range in the AgNWs/P-Si photodetector due to the featured surface plasmon resonance of the AgNWs compared to the other metals.

6.
Materials (Basel) ; 15(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079209

RESUMEN

This study investigates the growth time effect on the structural, morphological, optical, and photoelectrochemical characteristics of highly oriented ZnO nanorod arrays (ZNRAs). The nanorod arrays were grown on ITO substrates using the unified sol-gel spin coating and hydrothermal techniques. ZnO nanoparticles (ZNPs) were synthesized using the sol-gel spin coating method. In contrast, the hydrothermal method was used to grow the ZnO nanorods. The hydrothermal growth time investigated was between 4 and 12 h. The synthesized ZNRAs were used as the photoanode electrodes to investigate their photoelectrochemical (PEC) electrode potency. The as-prepared ZNRAs were characterized using various analytical tools to determine their structures, morphologies, optical, and photoelectrochemical traits. EDX spectra showed the presence of uncontaminated ZnO chemical composition, and FTIR spectra displayed the various functional groups in the samples. A rod-shaped ZnO nanocrystallite with mean lengths and diameters of 300-500 nm and 40-90 nm, respectively, is depicted. HRTEM images indicated the nucleation and growth of ZNRAs with a lattice fringe spacing of 0.26 nm and a growth lattice planer orientation of [002]. The optimum ZNRAs (grown at 8 h) as photoelectrode achieved a photoconversion efficiency of 0.46% and photocurrent density of 0.63 mA/cm2, that was 17 times higher than the one shown by ZNPs with Ag/AgCl as the reference electrode. Both values were higher than those reported in the literature, indicating the prospect of these ZNRAs for photoelectrode applications.

7.
Heliyon ; 8(7): e09959, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874070

RESUMEN

This paper reports the structures, morphologies, optical properties, and photoconversion efficiency (η%) of the In2S3/ZnO core-shell heterostructures nanorod arrays (IZCSHNRAs) produced via the controlled successive ionic layer absorption and reaction (SILAR) cycles. As-produced samples were characterized using XRD, FESEM, TEM, UV-Vis, PL, XPS and FTIR techniques. The proposed IZCSHNRAs revealed nearly double photocurrent density and η% values compared to the pure ZnO nanorod arrays (ZNRAs). In addition, the light absorption, crystallinity and microstructures of the specimens were appreciably improved with the increase of the SILAR cycles. The deposited nanoparticles of In2S3 (ISNPs) on the ZNRAs surface was responsible for the improvement in the heterostructures, light absorption and photogenerated electron-hole pairs separation, thus enhancing the photoconversion performance. It is established that a simple SILAR approach can be very useful to produce good quality IZCSHNRAs-based photoelectrodes required for the future development of high performance photoelectrochemical cells (PECs).

8.
Sci Rep ; 12(1): 10549, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732668

RESUMEN

Laser ablation synthesis in liquid solution (PLAL) is a green technique that allows for the physical formation of nanomaterials. This study indicates the preparation of stable gold nanoparticles (AuNPs) in Gum Arabic (GA) solution via laser ablation as a CT contrast agent. The optical properties were achieved using the absorption spectroscopic technique whereas the morphology and size distribution were investigated by TEM and ImageJ software. TEM image shows greater stability and spherical shape of GA-AuNPs with smaller size at 1.85 ± 0.99 nm compared to AuNPs without GA. The absorption spectrum of pure AuNPs has a lower absorption peak height in the visible range at λ = 521 nm, while the spectrum of GA-AuNPs has a higher plasmon peak height at λ = 514 nm with a blue shift towards lower wavelengths. The concentration of GA that dissolved in 10 mL of DI water via laser ablation is set at 20 mg. Increasing the number of pulses has only a minor effect on particle size distribution, which remains tiny in the nanometer range (less than 3 nm). For energies greater than 200 mJ, there is a blue shift toward shorter wavelengths. As the concentration of GA-AuNPs increases, the CT number is also increased indicating good image contrast. It can be concluded that there is a positive and significant influence of GA as a reducing agent for AuNPs, and a contrast agent for CT imaging which highlights its superiority in future medical applications.


Asunto(s)
Terapia por Láser , Nanopartículas del Metal , Medios de Contraste , Oro/química , Goma Arábiga/química , Nanopartículas del Metal/química , Tomografía Computarizada por Rayos X
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835923

RESUMEN

Despite many dedicated efforts, the fabrication of high-quality ZnO-incorporated Zinc@Silicon (Zn@Si) core-shell quantum dots (ZnSiQDs) with customized properties remains challenging. In this study, we report a new record for the brightness enhancement of ZnSiQDs prepared via a unified top-down and bottom-up strategy. The top-down approach was used to produce ZnSiQDs with uniform sizes and shapes, followed by the bottom-up method for their re-growth. The influence of various NH4OH contents (15 to 25 µL) on the morphology and optical characteristics of ZnSiQDs was investigated. The ZnSiQDs were obtained from the electrochemically etched porous Si (PSi) with Zn inclusion (ZnPSi), followed by the electropolishing and sonication in acetone. EFTEM micrographs of the samples prepared without and with NH4OH revealed the existence of spherical ZnSiQDs with a mean diameter of 1.22 to 7.4 nm, respectively. The emission spectra of the ZnSiQDs (excited by 365 nm) exhibited bright blue, green, orange-yellow, and red luminescence, indicating the uniform morphology related to the strong quantum confinement ZnSiQDs. In addition, the absorption and emission of the ZnSiQDs prepared with NH4OH were enhanced by 198.8% and 132.6%, respectively. The bandgap of the ZnSiQDs conditioned without and with NH4OH was approximately 3.6 and 2.3 eV, respectively.

10.
Appl Radiat Isot ; 170: 109622, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33592486

RESUMEN

This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.


Asunto(s)
Luz , Radiometría/métodos , Rayos X
11.
Materials (Basel) ; 15(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35009152

RESUMEN

The fabrication of Nano-based shielding materials is an advancing research area in material sciences and nanotechnology. Although bulky lead-based products remain the primary choice for radiation protection, environmental disadvantages and high toxicity limit their potentials, necessitating less costly, compatible, eco-friendly, and light-weight alternatives. The theme of the presented investigation is to compare the ionization radiation shielding potentialities of the lead acetate (LA), lead nitrate (LN), and bismuth nitrate (BN)-doped zinc oxide nanorods-based thin films (ZONRs-TFs) produced via the chemical bath deposition (CBD) technique. The impact of the selected materials' doping content on morphological and structural properties of ZONRs-TF was investigated. The X-ray diffractometer (XRD) analyses of both undoped and doped TFs revealed the existence of hexagonal quartzite crystal structures. The composition analysis by energy dispersive (EDX) detected the corrected elemental compositions of the deposited films. Field emission scanning electronic microscope (FESEM) images of the TFs showed highly porous and irregular surface morphologies of the randomly aligned NRs with cracks and voids. The undoped and 2 wt.% BN-doped TFs showed the smallest and largest grain size of 10.44 nm and 38.98 nm, respectively. The linear attenuation coefficient (µ) values of all the optimally doped ZONRs-TFs measured against the X-ray photon irradiation disclosed their excrement shielding potency. The measured µ values of the ZONRs-TFs displayed the trend of 1 wt.% LA-doped TF > 1 wt.% LN-doped TF > 3 wt.% BN-doped TF > undoped TFs). The values of µ of the ZONRs-TFs can be customized by adjusting the doping contents, which in turn controls the thickness and morphology of the TFs. In short, the proposed new types of the LA-, LN- and BN-doped ZONRs-TFs may contribute towards the development of the prospective ionization radiation shielding materials.

12.
Appl Radiat Isot ; 167: 109410, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33065401

RESUMEN

Radon and progeny concentration measurements in various drink samples are intrinsically important for assessing the health risks resulting from daily consumption of these drinks. In this study the comparison between two Solid State Nuclear Track Detectors (SSNTDs), the CR-39 and the CN-85 has been conducted for the purpose of evaluating the radon concentration, annual effective dose, the rate of exhalation of radon and the effective radium content in thirty-two different samples of soft drink, water, and milk available in the local Iraq markets. The results showed that there are significant differences in the measurement results for the two detectors. The annual effective dose of the investigated samples is still below the limit of International Commission on Radiological Protection (ICRP) recommendation in the measurements of both detectors.


Asunto(s)
Partículas alfa , Bebidas/análisis , Humanos , Irak , Monitoreo de Radiación/métodos , Radiometría/métodos
13.
ACS Omega ; 5(35): 22389-22394, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923796

RESUMEN

For the first time, the fabrication of novel nanorods by the addition of polyaniline (PANI) to polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymers through electrospinning method is investigated. Field emission scanning electron microscopy observations reveal the formation of nanofibers and nanorods having diameters in the range of 26.87-139.90 nm and 64.11-122.40 nm, respectively, and lengths in the range of 542.10 nm to 1.32 µm. Photoluminescence (PL) analysis shows the presence of peaks which are characteristic of isotactic polymers (363-412, 529-691 nm), 412-529 nm for PVA/PEO and 363-691 nm for PVA/PEO/PANI. PL spectra also show peak bonding at a wavelength of 552 nm. Manufacture of nanorods by electrospinning method gives better options for controlling the diameter and length of nanorods.

14.
Dose Response ; 17(2): 1559325819855532, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236089

RESUMEN

The purpose of this study is to investigate the potentiality of Gafchromic external beam therapy 3 (EBT3) film to measure low dosage of solar ultraviolet (SUV; 0-10 600 mJ/cm2) and x-ray (0-750 mGy) radiation. In this experiment, 2 groups of EBT3 films were prepared with size 2 cm × 1 cm. The first group of films was exposed by incremental SUV dose in the middle of the day. The other group was irradiated by x-ray at 100 kVp, 100 mA, and 2 S of tube voltage, tube current, and exposure time, respectively. The measured SUV consists of 90% ultraviolet A (UVA) and 10% ultraviolet B. The film discoloration was represented by visible absorbance spectroscopy technique using Jaz spectrometer from Ocean Optics Inc. Simple linear regression produced high accuracy with coefficients of determination, r 2 of 0.9804 and root mean square error (RMSE) of 434.88 mJ/cm2 for the measurement of SUV dose. On the other hand, r 2 of 0.98 and RMSE of 31 mGy was produced for the measurement of x-ray dose. The application of multiple linear regression enhanced the measurement accuracy with R 2 of 99% and 99.7% and RMSE of 327.06 mJ/cm2 and 15.045 mGy for SUV and x-ray dose, respectively. The spectral analysis shows a promising measurement at selected wavelengths for SUV and x-ray dose.

15.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495561

RESUMEN

Macroporous silicon was prepared through an anodization process; the prepared samples showed an average pore size ranging from 4 to 6 microns, and the depth of the pores in the silicon wafer was approximately 80 microns. The prepared samples were tested for hydrogen peroxide (H2O2) concentrations, which can be used for industrial and environmental sensing applications. The selected H2O2 concentration covered a wide range from 10 to 5000 µM. The tested samples showed a linear response through the tested H2O2 concentrations with a sensitivity of 0.55 µA µM-1∙cm-2 and lower detection limits of 4.35 µM at an operating voltage of 5 V. Furthermore, the electrode exhibited a rapid response with a response time of ca. two seconds. Furthermore, the prepared sensor showed a reasonable stability over a one-month time period.

16.
Lasers Med Sci ; 32(9): 2089-2095, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28967036

RESUMEN

The study of the effects of low-level laser (LLL) radiation on blood is important for elucidating the mechanisms behind the interaction of LLL radiation and biologic tissues. Different therapy methods that involve blood irradiation have been developed and used for clinical purposes with beneficial effects. The aim of this study was to compare the effects of different irradiation protocols using a diode-pumped solid-state LLL (λ = 405 nm) on samples of human blood by measuring the erythrocyte sedimentation rate (ESR). Human blood samples were obtained through venipuncture into tubes containing EDTA as an anticoagulant. Every sample was divided into two equal aliquots to be used as an irradiated sample and a non-irradiated control sample. The irradiated aliquot was subjected to a laser beam with a wavelength of 405 nm and an energy density of 72 J/cm2. The radiation source had a fixed irradiance of 30 mW/cm2. The ESR change was observed for three different experimental protocols: irradiated whole blood, irradiated red blood cells (RBCs) samples re-suspended in non-irradiated blood plasma, and non-irradiated RBCs re-suspended in irradiated blood plasma. The ESR values were measured after laser irradiation and compared with the non-irradiated control samples. Irradiated blood plasma in which non-radiated RBCs were re-suspended was found to result in the largest ESR decrease for healthy human RBCs, 51%, when compared with RBCs re-suspended in non-irradiated blood plasma. The decrease in ESR induced by LLL irradiation of the plasma alone was likely related to changes in the plasma composition and an increase in the erythrocyte zeta potential upon re-suspension of the RBCs in the irradiated blood plasma.


Asunto(s)
Eritrocitos/efectos de la radiación , Láseres de Estado Sólido , Adulto , Sedimentación Sanguínea/efectos de la radiación , Forma de la Célula/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Recuento de Eritrocitos , Volumen de Eritrocitos/efectos de la radiación , Hematócrito , Humanos , Plasma/efectos de la radiación
17.
Lasers Med Sci ; 32(2): 405-411, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28044209

RESUMEN

Low-level laser irradiation (LLLI) has various effects on cultured human lymphocytes in vitro, but little is known about such effects in whole blood. This study investigated whether LLLI affected lymphocyte count in human whole blood in vitro. A total number of 130 blood samples were collected from apparently healthy adult patients through venipuncture into tubes containing EDTA. Each sample was divided into two equal aliquots to be used as a non-irradiated control sample and an irradiated sample. The irradiated aliquot was subjected to laser wavelengths of 405, 589, and 780 nm with different fluences of 36, 54, 72, and 90 J/cm2, at a fixed irradiance of 30 mW/cm2. A paired student t test was used to compare between non-irradiated and irradiated samples. The lymphocyte counts were measured using a computerized hematology analyzer and showed a significant (P < 0.02) maximum increase (1.6%) at a fluence of 72 J/cm2 when compared with non-irradiated samples. This increase in lymphocyte count upon irradiation was confirmed by flow cytometry. At a wavelength of 589 nm and fluence of 72 J/cm2, irradiation of whole blood samples showed a significant increase in CD45 lymphocytes and natural killer (NK) (CD16, CD56) cells, but no significant changes in CD3 T lymphocytes, T-suppressor (CD3, CD8) cells, T-helper (CD3, CD4) cells, and CD19 B lymphocytes when compared with their non-irradiated counterparts. Our results clearly demonstrate that NK cell count is altered by irradiation, which ultimately affects the whole lymphocyte count significantly.


Asunto(s)
Terapia por Luz de Baja Intensidad , Linfocitos/efectos de la radiación , Adulto , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Recuento de Linfocitos , Subgrupos Linfocitarios/efectos de la radiación , Masculino
18.
Lasers Med Sci ; 31(6): 1195-201, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27250712

RESUMEN

This study is designed to investigate in vitro low-level laser (LLL) effects on rheological parameter, erythrocyte sedimentation rate (ESR), of human blood. The interaction mechanism between LLL radiation and blood is unclear. Therefore, research addresses the effects of LLL irradiation on human blood and this is essential to understanding how laser radiation interacts with biological cells and tissues. The blood samples were collected through venipuncture into EDTA-containing tubes as an anticoagulant. Each sample was divided into two equal aliquots to be used as a non-irradiated sample (control) and an irradiated sample. The aliquot was subjected to doses of 36, 54, 72 and 90 J/cm(2) with wavelengths of 405, 589 and 780 nm, with a radiation source at a fixed power density of 30 mW/cm(2). The ESR and red blood cell count and volume are measured after laser irradiation and compared with the non-irradiated samples. The maximum reduction in ESR is observed with radiation dose 72 J/cm(2) delivered with a 405-nm wavelength laser beam. Moreover, no hemolysis is observed under these irradiation conditions. In a separate protocol, ESR of separated RBCs re-suspended in irradiated plasma (7.6 ± 2.3 mm/h) is found to be significantly lower (by 51 %) than their counterpart re-suspended in non-irradiated plasma (15.0 ± 3.7 mm/h). These results indicate that ESR reduction is mainly due to the effects of LLL on the plasma composition that ultimately affect whole blood ESR.


Asunto(s)
Sedimentación Sanguínea/efectos de la radiación , Eritrocitos/efectos de la radiación , Hemólisis/efectos de la radiación , Terapia por Luz de Baja Intensidad , Humanos
19.
Sensors (Basel) ; 16(6)2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27338381

RESUMEN

In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...