Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3456, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103492

RESUMEN

Cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome in a process requiring the RNA helicase Mtr4 and specific adaptor complexes for RNA substrate recognition. The PAXT and MTREC complexes have recently been identified as homologous exosome adaptors in human and fission yeast, respectively. The eleven-subunit MTREC comprises the zinc-finger protein Red1 and the Mtr4 homologue Mtl1. Here, we use yeast two-hybrid and pull-down assays to derive a detailed interaction map. We show that Red1 bridges MTREC submodules and serves as the central scaffold. In the crystal structure of a minimal Mtl1/Red1 complex an unstructured region adjacent to the Red1 zinc-finger domain binds to both the Mtl1 KOW domain and stalk helices. This interaction extends the canonical interface seen in Mtr4-adaptor complexes. In vivo mutational analysis shows that this interface is essential for cell survival. Our results add to Mtr4 versatility and provide mechanistic insights into the MTREC complex.


Asunto(s)
Proteínas Portadoras/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Dedos de Zinc , Sitios de Unión , Proteínas Portadoras/química , Supervivencia Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Schizosaccharomyces/citología
2.
PLoS One ; 15(6): e0234932, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32530946

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0183272.].

3.
J Biol Chem ; 294(52): 19967-19977, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31740579

RESUMEN

RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Pirofosfatasas/metabolismo , ARN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Difosfatos/metabolismo , Concentración de Iones de Hidrógeno , Manganeso/química , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Pirofosfatasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Especificidad por Sustrato
4.
PLoS Pathog ; 15(9): e1008065, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31557263

RESUMEN

Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.


Asunto(s)
Proteínas Protozoarias/metabolismo , Tiorredoxinas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidad
5.
Nat Commun ; 10(1): 3050, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296859

RESUMEN

The Rea1 AAA+-ATPase dislodges assembly factors from pre-60S ribosomes upon ATP hydrolysis, thereby driving ribosome biogenesis. Here, we present crystal structures of Rea1-MIDAS, the conserved domain at the tip of the flexible Rea1 tail, alone and in complex with its substrate ligands, the UBL domains of Rsa4 or Ytm1. These complexes have structural similarity to integrin α-subunit domains when bound to extracellular matrix ligands, which for integrin biology is a key determinant for force-bearing cell-cell adhesion. However, the presence of additional motifs equips Rea1-MIDAS for its tasks in ribosome maturation. One loop insert cofunctions as an NLS and to activate the mechanochemical Rea1 cycle, whereas an additional ß-hairpin provides an anchor to hold the ligand UBL domains in place. Our data show the versatility of the MIDAS fold for mechanical force transmission in processes as varied as integrin-mediated cell adhesion and mechanochemical removal of assembly factors from pre-ribosomes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Proteínas Fúngicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/aislamiento & purificación , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adhesión Celular/fisiología , Chaetomium/fisiología , Cristalografía por Rayos X , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Integrinas/ultraestructura , Ligandos , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
6.
PLoS Biol ; 16(6): e2005160, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29889857

RESUMEN

The succession of molecular events leading to eukaryotic translation reinitiation-whereby ribosomes terminate translation of a short open reading frame (ORF), resume scanning, and then translate a second ORF on the same mRNA-is not well understood. Density-regulated reinitiation and release factor (DENR) and multiple copies in T-cell lymphoma-1 (MCTS1) are implicated in promoting translation reinitiation both in vitro in translation extracts and in vivo. We present here the crystal structure of MCTS1 bound to a fragment of DENR. Based on this structure, we identify and experimentally validate that DENR residues Glu42, Tyr43, and Tyr46 are important for MCTS1 binding and that MCTS1 residue Phe104 is important for tRNA binding. Mutation of these residues reveals that DENR-MCTS1 dimerization and tRNA binding are both necessary for DENR and MCTS1 to promote translation reinitiation in human cells. These findings thereby link individual residues of DENR and MCTS1 to specific molecular functions of the complex. Since DENR-MCTS1 can bind tRNA in the absence of the ribosome, this suggests the DENR-MCTS1 complex could recruit tRNA to the ribosome during reinitiation analogously to the eukaryotic initiation factor 2 (eIF2) complex in cap-dependent translation.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , ARN de Transferencia/metabolismo , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Oncogénicas/genética , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , ARN de Transferencia/genética , Ribosomas/metabolismo
7.
Cell ; 171(7): 1599-1610.e14, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29245012

RESUMEN

Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and ∼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1's meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.


Asunto(s)
Chaetomium/química , Biogénesis de Organelos , Subunidades Ribosómicas Grandes de Eucariotas/química , Chaetomium/citología , Microscopía por Crioelectrón , Redes y Vías Metabólicas , Modelos Moleculares , Pliegue del ARN , Ribonucleoproteínas/química
8.
PLoS One ; 12(8): e0183272, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813493

RESUMEN

In eukaryotes, ribosome assembly is a highly complex process that involves more than 200 assembly factors that ensure the folding, modification and processing of the different rRNA species as well as the timely association of ribosomal proteins. One of these factors, Mpp10 associates with Imp3 and Imp4 to form a complex that is essential for the normal production of the 18S rRNA. Here we report the crystal structure of a complex between Imp4 and a short helical element of Mpp10 to a resolution of 1.88 Å. Furthermore, we extend the interaction network of Mpp10 and characterize two novel interactions. Mpp10 is able to bind the ribosome biogenesis factor Utp3/Sas10 through two conserved motifs in its N-terminal region. In addition, Mpp10 interacts with the ribosomal protein S5/uS7 using a short stretch within an acidic loop region. Thus, our findings reveal that Mpp10 provides a platform for the simultaneous interaction with multiple proteins in the 90S pre-ribosome.


Asunto(s)
Fosfoproteínas/metabolismo , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía en Gel , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo
9.
PLoS One ; 12(6): e0178752, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575120

RESUMEN

Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The 'U three protein' (UTP) complexes and snoRNP particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5'-end of the pre-ribosomal RNA (5'-ETS). This oligomeric complex predominantly consists of ß-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic ß-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal ß-propeller as relevant for protein integrity and potentially Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5'-ETS RNA from the internally hidden 5'-end up to the region that hybridizes to the 3'-hinge sequence of U3 snoRNA and validate a specific Utp4/5'-ETS interaction by CRAC analysis.


Asunto(s)
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Biogénesis de Organelos , Precursores del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Chaetomium/genética , Chaetomium/ultraestructura , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Precursores del ARN/química , Ribonucleoproteínas/química , Ribosomas/ultraestructura , Transcripción Genética
10.
Protein Sci ; 26(2): 327-342, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27863450

RESUMEN

Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.


Asunto(s)
Chaetomium/química , Proteínas Fúngicas/química , Proteínas Ribosómicas/química , Ribosomas/química , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
11.
Nucleic Acids Res ; 44(2): 926-39, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26657628

RESUMEN

The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7-Erb1-Ytm1 complex (or human Pes1-Bop1-Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1-Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1-Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1-Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Chaetomium/genética , Chaetomium/crecimiento & desarrollo , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Complejos Multiproteicos , Mutación , Biogénesis de Organelos , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
12.
Nat Commun ; 6: 7494, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26112308

RESUMEN

Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1's WD-repeat ß-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation.


Asunto(s)
Proteínas Fúngicas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Chaetomium/genética , Chaetomium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Técnicas del Sistema de Dos Híbridos
13.
RNA Biol ; 11(5): 427-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667346

RESUMEN

RNAs play pivotal roles in the cell, ranging from catalysis (e.g., RNase P), acting as adaptor molecule (tRNA) to regulation (e.g., riboswitches). Precise understanding of its three-dimensional structures has given unprecedented insight into the molecular basis for all of these processes. Nevertheless, structural studies on RNA are still limited by the very special nature of this polymer. The most common methods for the determination of 3D RNA structures are NMR and X-ray crystallography. Both methods have their own set of requirements and give different amounts of information about the target RNA. For structural studies, the major bottleneck is usually obtaining large amounts of highly pure and homogeneously folded RNA. Especially for X-ray crystallography it can be necessary to screen a large number of variants to obtain well-ordered single crystals. In this mini-review we give an overview about strategies for the design, in vitro production, and purification of RNA for structural studies.


Asunto(s)
ARN/síntesis química , ARN/aislamiento & purificación , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , ARN/química , Pliegue del ARN , ARN Catalítico/química
14.
PLoS Biol ; 11(12): e1001750, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24391470

RESUMEN

Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/fisiología , FN-kappa B/genética , Aspergillus nidulans/genética , Aspergillus nidulans/fisiología , Secuencia de Consenso/genética , Secuencia de Consenso/fisiología , ADN de Hongos/genética , ADN de Hongos/fisiología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Genes rel/genética , Genes rel/fisiología , FN-kappa B/fisiología
15.
PLoS Genet ; 8(7): e1002816, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829779

RESUMEN

The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An) consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK module controls the coordination of fungal development and secondary metabolite production. It lacks the membrane docking yeast Ste5 scaffold homolog; but, similar to yeast, the entire MAPK module's proteins interact with each other at the plasma membrane. AnFus3 is the only subunit with the potential to enter the nucleus from the nuclear envelope. AnFus3 interacts with the conserved nuclear transcription factor AnSte12 to initiate sexual development and phosphorylates VeA, which is a major regulatory protein required for sexual development and coordinated secondary metabolite production. Our data suggest that not only Fus3, but even the entire MAPK module complex of four physically interacting proteins, can migrate from plasma membrane to nuclear envelope.


Asunto(s)
Aspergillus nidulans , Sistema de Señalización de MAP Quinasas , Desarrollo Sexual/genética , Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Membrana Nuclear/metabolismo , Feromonas/genética , Feromonas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA