Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 375(6587): 1390-1392, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35324307

RESUMEN

Membranes have the potential to substantially reduce energy consumption of industrial chemical separations, but their implementation has been limited owing to a performance upper bound-the trade-off between permeability and selectivity. Although recent developments of highly permeable polymer membranes have advanced the upper bounds for various gas pairs, these polymers typically exhibit limited selectivity. We report a class of hydrocarbon ladder polymers that can achieve both high selectivity and high permeability in membrane separations for many industrially relevant gas mixtures. Additionally, their corresponding films exhibit desirable mechanical and thermal properties. Tuning of the ladder polymer backbone configuration was found to have a profound effect on separation performance and aging behavior.

2.
J Am Chem Soc ; 144(9): 4114-4123, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35167268

RESUMEN

Whereas photoinduced, copper-catalyzed couplings of nitrogen nucleophiles with alkyl electrophiles have recently been shown to provide an attractive approach to achieving a variety of enantioselective C-N bond constructions, mechanistic studies of these transformations have lagged the advances in reaction development. Herein we provide mechanistic insight into a previously reported photoinduced, copper-catalyzed enantioconvergent C-N coupling of a carbazole nucleophile with a racemic tertiary α-haloamide electrophile. Building on the isolation of a copper(II) model complex whose EPR parameters serve as a guide, we independently synthesize two key intermediates in the proposed catalytic cycle, a copper(II) metalloradical (L*CuII(carb')2) (L* = a monodentate chiral phosphine ligand; carb' = a carbazolide ligand), as well as a tertiary α-amide organic radical (R·); the generation and characterization of R· was guided by DFT calculations, which suggested that it would be stable to homocoupling. Continuous-wave (CW) and pulse EPR studies, along with corresponding DFT calculations, are among the techniques used to characterize these reactive radicals. We establish that these two radicals do indeed combine to furnish the C-N coupling product in good yield and with significant enantiomeric excess (77% yield, 55% ee), thereby supporting the chemical competence of these proposed intermediates. DFT calculations are consistent with R· initially binding to copper(II) via a dative interaction from the closed-shell carbonyl oxygen atom of the radical, which positions the α-carbon for direct reaction with the copper(II)-bound carbazole N atom, to generate the C-N bond with enantioselectivity, without the formation of an alkylcopper(III) intermediate.


Asunto(s)
Cobre , Alquilación , Catálisis , Cobre/química , Ligandos , Estereoisomerismo
3.
J Am Chem Soc ; 139(49): 18101-18106, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29200268

RESUMEN

Despite the long history of SN2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.

4.
J Am Chem Soc ; 139(36): 12716-12723, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28817770

RESUMEN

We have recently reported that a variety of couplings of nitrogen, sulfur, oxygen, and carbon nucleophiles with organic halides can be achieved under mild conditions (-40 to 30 °C) through the use of light and a copper catalyst. Insight into the various mechanisms by which these reactions proceed may enhance our understanding of chemical reactivity and facilitate the development of new methods. In this report, we apply an array of tools (EPR, NMR, transient absorption, and UV-vis spectroscopy; ESI-MS; X-ray crystallography; DFT calculations; reactivity, stereochemical, and product studies) to investigate the photoinduced, copper-catalyzed coupling of carbazole with alkyl bromides. Our observations are consistent with pathways wherein both an excited state of the copper(I) carbazolide complex ([CuI(carb)2]-) and an excited state of the nucleophile (Li(carb)) can serve as photoreductants of the alkyl bromide. The catalytically dominant pathway proceeds from the excited state of Li(carb), generating a carbazyl radical and an alkyl radical. The cross-coupling of these radicals is catalyzed by copper via an out-of-cage mechanism in which [CuI(carb)2]- and [CuII(carb)3]- (carb = carbazolide), both of which have been identified under coupling conditions, are key intermediates, and [CuII(carb)3]- serves as the persistent radical that is responsible for predominant cross-coupling. This study underscores the versatility of copper(II) complexes in engaging with radical intermediates that are generated by disparate pathways, en route to targeted bond constructions.


Asunto(s)
Aminas/química , Bromuros/química , Carbazoles/química , Cobre/química , Alquilación , Catálisis , Cristalografía por Rayos X , Análisis Espectral/métodos
5.
Inorg Chem ; 53(13): 6828-36, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24915578

RESUMEN

The reaction of racemic SalBinap ligand, (±)-H2(ONN*OMe), with InCl3 and excess NaOEt generated a mixture of two dinuclear compounds [(µ-κ(2)-ONN*OMe)In(µ-OEt)]2 (1a) and [κ(4)-ONN*OMe)In(µ-OEt)]2 (1b), which were isolated and fully characterized. Polymerization of racemic lactide with 1a and 1b was slow in refluxing THF and showed only modest stereoselectivity. Catalyst 1b displayed better control than 1a, with the experimental molecular weights of the resulting poly(lactic acid) in agreement with the expected values. The higher-than-expected molecular weights observed in polymers formed by 1a were due to partial initiation of the catalyst. The reaction of (±)-H2(ONN*OtBu) with InCl3 yielded (κ(4)-ONN*OtBu)InCl (2); however, further reactivity of the compound formed a mixture of products. An attempt to prevent aggregation by reacting (±)-H2(ONN*OMe) with InCl3 and excess NaO(i)Pr yielded an intractable mixture, including [(µ-κ(2)-ONN*OMe)In]2(µ-Cl)(µ-OH) (3). The thermal stabilities of compounds 1a and 1b under polymerization conditions were investigated. Examination of the polymerization behavior of complexes 1a and 1b and the reaction equilibrium between the two illustrates the importance of aggregation in indium salen complexes compared to their aluminum counterparts.

6.
Langmuir ; 28(50): 17256-62, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23186125

RESUMEN

Chiral nematic mesoporous materials decorated with metal nanoparticles have been prepared using the templated self-assembly of nanocrystalline cellulose (NCC). By adding small quantities of ionic compounds to aqueous dispersions of NCC and tetramethoxysilane (TMOS), the helical pitch of the chiral nematic structure could be manipulated in a manner complementary to the ratio of NCC/TMOS previously demonstrated by our group. We have studied the transformation of these ion-loaded composites into high surface area mesoporous silica and carbon films decorated with metal nanoparticles through calcination and carbonization, respectively. This general and straightforward approach to prepare chiral nematic metal nanoparticle assemblies may be useful in a variety of applications, particularly for their chiral optical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA