Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Adv Sci (Weinh) ; : e2308990, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297408

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic and lethal disease. Gasdermins are primarily associated with necrosis via membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. In this study, GSDMC upregulation during PDAC progression is reported. GSDMC directly induces genes related to stemness, EMT, and immune evasion. Targeting Gsdmc in murine PDAC models reprograms the immunosuppressive tumor microenvironment, rescuing the recruitment of anti-tumor immune cells through CXCL9. This not only results in diminished tumor initiation, growth and metastasis, but also enhances the response to KRASG12D inhibition and PD-1 checkpoint blockade, respectively. Mechanistically, it is discovered that ADAM17 cleaves GSDMC, releasing nuclear fragments binding to promoter regions of stemness, metastasis, and immune evasion-related genes. Pharmacological inhibition of GSDMC cleavage or prevention of its nuclear translocation is equally effective in suppressing GSDMC's downstream targets and inhibiting PDAC progression. The findings establish GSDMC as a potential therapeutic target for enhancing treatment response in this deadly disease.

2.
Cell Rep Med ; 5(9): 101692, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39163864

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a "liquid biopsy" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4+ CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Animales , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Ratones , Femenino , Masculino , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
3.
Gut ; 73(9): 1489-1508, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38754953

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Células Madre Neoplásicas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Evasión Inmune , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología
4.
J Exp Clin Cancer Res ; 42(1): 323, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38012687

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com ).


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Transducción de Señal , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Neoplasias Pancreáticas
5.
Eur J Cancer ; 190: 112940, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37413845

RESUMEN

Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Proteómica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Células Neoplásicas Circulantes/patología , Pronóstico , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas
6.
J Exp Clin Cancer Res ; 42(1): 106, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118819

RESUMEN

BACKGROUND: The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS: We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS: V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS: Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.


Asunto(s)
Anticuerpos Biespecíficos , Carcinoma , Melanoma Experimental , Humanos , Ratones , Animales , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/metabolismo , Memoria Inmunológica , Inhibidores de Puntos de Control Inmunológico , Melanoma Experimental/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Mamíferos/metabolismo
7.
Cancer Res Commun ; 3(4): 640-658, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37082579

RESUMEN

Specific targets for cancer treatment are highly desirable, but still remain to be discovered. While previous reports suggested that CAPRIN-1 localizes in the cytoplasm, here we now show that part of this molecule is strongly expressed on the cell membrane surface in most solid cancers, but not normal tissues. Notably, the membrane expression of CAPRIN-1 extended to the subset of highly tumorigenic cancer stem cells and epithelial-mesenchymal transition (EMT)-induced metastatic cancer cells. In addition, we revealed that cancer cells with particularly high CAPRIN-1 surface expression exhibited enhanced tumorigenicity. We generated a therapeutic humanized anti-CAPRIN-1 antibody (TRK-950), which strongly and specifically binds to various cancer cells and shows antitumor effects via engagement of immune cells. TRK-950 was further developed as a new cancer drug and a series of preclinical studies demonstrates its therapeutic potency in tumor-bearing mouse models and safety in a relevant cynomolgus monkey model. Together, our data demonstrate that CAPRIN-1 is a novel and universal target for cancer therapies. A phase I clinical study of TRK-950 has been completed (NCT02990481) and a phase Ib study (combination with approved drugs) is currently underway (NCT03872947) in the United States and France. In parallel, a phase I study in Japan is in progress as well (NCT05423262). Significance: Antibody-based cancer therapies have been demonstrated to be effective, but are only approved for a limited number of targets, because the majority of these markers is shared with healthy tissue, which may result in adverse effects. Here, we have successfully identified CAPRIN-1 as a novel truly cancer-specific target, universally expressed on membranes of various cancer cells including cancer stem cells. Clinical studies are underway for the anti-CAPRIN-1 therapeutic antibody TRK-950.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Macaca fascicularis/metabolismo , Neoplasias/tratamiento farmacológico
8.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188868, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842769

RESUMEN

Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Biopsia Líquida , ADN de Neoplasias , Biopsia , Neoplasias Pancreáticas
9.
Pharmaceutics ; 14(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890361

RESUMEN

Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer of the elderly, with high metastatic potential and poor prognosis. In particular, the primary resistance to immune checkpoint inhibitors (ICI) in metastatic (m)MCC patients represents a challenge not yet met by any efficient treatment modality. Herein, we describe a novel therapeutic concept with short-interval, low-dose 177Lutetium (Lu)-high affinity (HA)-DOTATATE [177Lu]Lu-HA-DOTATATE peptide receptor radionuclide therapy (SILD-PRRT) in combination with PD-1 ICI to induce remission in patients with ICI-resistant mMCC. We report on the initial refractory response of two immunocompromised mMCC patients to the PD-L1 inhibitor avelumab. After confirming the expression of somatostatin receptors (SSTR) on tumor cells by [68Ga]Ga-HA-DOTATATE-PET/CT (PET/CT), we employed low-dose PRRT (up to six treatments, mean activity 3.5 GBq per cycle) at 3-6 weeks intervals in combination with the PD-1 inhibitor pembrolizumab to restore responsiveness to ICI. This combination enabled the synergistic application of PD-1 checkpoint immunotherapy with low-dose PRRT at more frequent intervals, and was very well tolerated by both patients. PET/CTs demonstrated remarkable responses at all metastatic sites (lymph nodes, distant skin, and bones), which were maintained for 3.6 and 4.8 months, respectively. Both patients eventually succumbed with progressive disease after 7.7 and 8 months, respectively, from the start of treatment with SILD-PRRT and pembrolizumab. We demonstrate that SILD-PRRT in combination with pembrolizumab is safe and well-tolerated, even in elderly, immunocompromised mMCC patients. The restoration of clinical responses in ICI-refractory patients as proposed here could potentially be used not only for patients with mMCC, but many other cancer types currently treated with PD-1/PD-L1 inhibitors.

11.
Oncogene ; 38(34): 6226-6239, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308488

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) arises through accumulation of multiple genetic alterations. However, cancer cells also acquire and depend on cancer-specific epigenetic changes. To conclusively demonstrate the crucial relevance of the epigenetic programme for the tumourigenicity of the cancer cells, we used cellular reprogramming technology to reverse these epigenetic changes. We reprogrammed human PDAC cultures using three different techniques - (1) lentivirally via induction of Yamanaka Factors (OSKM), (2) the pluripotency-associated gene OCT4 and the microRNA mir-302, or (3) using episomal vectors as a safer alternative without genomic integration. We found that induction with episomal vectors was the most efficient method to reprogram primary human PDAC cultures as well as primary human fibroblasts that served as positive controls. Successful reprogramming was evidenced by immunostaining, alkaline phosphatase staining, and real-time PCR. Intriguingly, reprogramming of primary human PDAC cultures drastically reduced their in vivo tumourigenicity, which appeared to be driven by the cells' enhanced differentiation and loss of stemness upon transplantation. Our study demonstrates that reprogrammed primary PDAC cultures are functionally distinct from parental PDAC cells resulting in drastically reduced tumourigenicity in vitro and in vivo. Thus, epigenetic alterations account at least in part for the tumourigenicity and aggressiveness of pancreatic cancer, supporting the notion that epigenetic modulators could be a suitable approach to improve the dismal outcome of patients with pancreatic cancer.


Asunto(s)
Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Reprogramación Celular/genética , Epigénesis Genética/fisiología , Neoplasias Pancreáticas/patología , Animales , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Células Cultivadas , Embrión de Mamíferos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Cultivo Primario de Células
12.
Gut ; 68(6): 1052-1064, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30121627

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a disease of unmet medical need. While immunotherapy with chimeric antigen receptor T (CAR-T) cells has shown much promise in haematological malignancies, their efficacy for solid tumours is challenged by the lack of tumour-specific antigens required to avoid on-target, off-tumour effects. Switchable CAR-T cells whereby activity of the CAR-T cell is controlled by dosage of a tumour antigen-specific recombinant Fab-based 'switch' to afford a fully tunable response may overcome this translational barrier. DESIGN: In this present study, we have used conventional and switchable CAR-T cells to target the antigen HER2, which is upregulated on tumour cells, but also present at low levels on normal human tissue. We used patient-derived xenograft models derived from patients with stage IV PDAC that mimic the most aggressive features of PDAC, including severe liver and lung metastases. RESULTS: Switchable CAR-T cells followed by administration of the switch directed against human epidermal growth factor receptor 2 (HER2)-induced complete remission in difficult-to-treat, patient-derived advanced pancreatic tumour models. Switchable HER2 CAR-T cells were as effective as conventional HER2 CAR-T cells in vivo testing a range of different CAR-T cell doses. CONCLUSION: These results suggest that a switchable CAR-T system is efficacious against aggressive and disseminated tumours derived from patients with advanced PDAC while affording the potential safety of a control switch.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Animales , Antígenos de Neoplasias/genética , Biopsia con Aguja , Carcinoma Ductal Pancreático/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunoterapia/métodos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias Pancreáticas/inmunología , Receptor ErbB-2/genética , Estadísticas no Paramétricas , Resultado del Tratamiento , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Nat Commun ; 9(1): 3279, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115931

RESUMEN

Isolation of metastatic circulating tumor cells (CTCs) from cancer patients is of high value for disease monitoring and molecular characterization. Despite the development of many new CTC isolation platforms in the last decade, their isolation and detection has remained a challenge due to the lack of specific and sensitive markers. In this feasibility study, we present a method for CTC isolation based on the specific binding of the malaria rVAR2 protein to oncofetal chondroitin sulfate (ofCS). We show that rVAR2 efficiently captures CTCs from hepatic, lung, pancreatic, and prostate carcinoma patients with minimal contamination of peripheral blood mononuclear cells. Expression of ofCS is present on epithelial and mesenchymal cancer cells and is equally preserved during epithelial-mesenchymal transition of cancer cells. In 25 stage I-IV prostate cancer patient samples, CTC enumeration significantly correlates with disease stage. Lastly, rVAR2 targets a larger and more diverse population of CTCs compared to anti-EpCAM strategies.


Asunto(s)
Antígenos de Protozoos/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Células Neoplásicas Circulantes/metabolismo , Adaptación Fisiológica , Línea Celular Tumoral , Separación Celular , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Leucocitos Mononucleares/metabolismo , Magnetismo , Masculino , Mesodermo/metabolismo , Microesferas , Estadificación de Neoplasias , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Recombinantes/metabolismo
14.
Oncotarget ; 8(13): 21609-21625, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423491

RESUMEN

The stromal microenvironment controls response to injury and inflammation, and is also an important determinant of cancer cell behavior. However, our understanding of its modulation by miRNA (miR) and their respective targets is still sparse. Here, we identified the miR-25-93-106b cluster and two new target genes as critical drivers for metastasis and immune evasion of cancer cells. Using miR-25-93-106b knockout mice or antagomiRs, we demonstrated regulation of the production of the chemoattractant CXCL12 controlling bone marrow metastasis. Moreover, we identified the immune checkpoint PD-L1 (CD274) as a novel miR-93/106b target playing a central role in diminishing tumor immunity. Eventually, upregulation of miR-93 and miR-106b via miR-mimics or treatment with an epigenetic reader domain (BET) inhibitor resulted in diminished expression of CXCL12 and PD-L1. These data suggest a potential new therapeutic rationale for use of BET inhibitors for dual targeting of cancers with strong immunosuppressive and metastatic phenotypes.


Asunto(s)
Antígeno B7-H1/metabolismo , Quimiocina CXCL12/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Escape del Tumor/genética , Animales , Citometría de Flujo , Técnicas de Inactivación de Genes , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Familia de Multigenes/genética , Reacción en Cadena de la Polimerasa
15.
Biochim Biophys Acta Gen Subj ; 1861(6): 1597-1605, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28161480

RESUMEN

Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Antígeno CD47/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Portadores de Fármacos , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Antígeno CD47/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacología , Composición de Medicamentos , Humanos , Nanopartículas de Magnetita/química , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Propiedades de Superficie , Células Tumorales Cultivadas , Gemcitabina
16.
Cancer Res ; 76(15): 4546-58, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27261509

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) and other carcinomas are hierarchically organized, with cancer stem cells (CSC) residing at the top of the hierarchy, where they drive tumor progression, metastasis, and chemoresistance. As CSC and non-CSC share an identical genetic background, we hypothesize that differences in epigenetics account for the striking functional differences between these two cell populations. Epigenetic mechanisms, such as DNA methylation, play an important role in maintaining pluripotency and regulating the differentiation of stem cells, but the role of DNA methylation in pancreatic CSC is obscure. In this study, we investigated the genome-wide DNA methylation profile of PDAC CSC, and we determined the importance of DNA methyltransferases for CSC maintenance and tumorigenicity. Using high-throughput methylation analysis, we discovered that sorted CSCs have a higher level of DNA methylation, regardless of the heterogeneity or polyclonality of the CSC populations present in the tumors analyzed. Mechanistically, CSC expressed higher DNMT1 levels than non-CSC. Pharmacologic or genetic targeting of DNMT1 in CSCs reduced their self-renewal and in vivo tumorigenic potential, defining DNMT1 as a candidate CSC therapeutic target. The inhibitory effect we observed was mediated in part through epigenetic reactivation of previously silenced miRNAs, in particular the miR-17-92 cluster. Together, our findings indicate that DNA methylation plays an important role in CSC biology and also provide a rationale to develop epigenetic modulators to target CSC plasticity and improve the poor outcome of PDAC patients. Cancer Res; 76(15); 4546-58. ©2016 AACR.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Humanos , Células Madre Neoplásicas/patología , ARN Largo no Codificante , Regulación hacia Arriba
17.
Cell Rep ; 12(10): 1594-605, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26321631

RESUMEN

Conquering obesity has become a major socioeconomic challenge. Here, we show that reduced expression of the miR-25-93-106b cluster, or miR-93 alone, increases fat mass and, subsequently, insulin resistance. Mechanistically, we discovered an intricate interplay between enhanced adipocyte precursor turnover and increased adipogenesis. First, miR-93 controls Tbx3, thereby limiting self-renewal in early adipocyte precursors. Second, miR-93 inhibits the metabolic target Sirt7, which we identified as a major driver of in vivo adipogenesis via induction of differentiation and maturation of early adipocyte precursors. Using mouse parabiosis, obesity in mir-25-93-106b(-/-) mice could be rescued by restoring levels of circulating miRNA and subsequent inhibition of Tbx3 and Sirt7. Downregulation of miR-93 also occurred in obese ob/ob mice, and this phenocopy of mir-25-93-106b(-/-) was partially reversible with injection of miR-93 mimics. Our data establish miR-93 as a negative regulator of adipogenesis and a potential therapeutic option for obesity and the metabolic syndrome.


Asunto(s)
Adiposidad , MicroARNs/fisiología , Sirtuinas/genética , Proteínas de Dominio T Box/genética , Células 3T3-L1 , Adipocitos/fisiología , Adipogénesis , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Autorrenovación de las Células , Femenino , Resistencia a la Insulina , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Interferencia de ARN , Sirtuinas/metabolismo , Proteínas de Dominio T Box/metabolismo
18.
Stem Cells ; 33(10): 2893-902, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202953

RESUMEN

Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.


Asunto(s)
Resistencia a Antineoplásicos/genética , Células Madre Neoplásicas , Neoplasias Pancreáticas/genética , Animales , Proliferación Celular , Humanos , Metástasis de la Neoplasia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Gut ; 64(12): 1936-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25887381

RESUMEN

OBJECTIVE: Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. DESIGN: Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. RESULTS: We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-ß1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. CONCLUSIONS: Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Activinas/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Autorrenovación de las Células , Transformación Celular Neoplásica , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Regulación hacia Abajo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Proteína Nodal/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , ARN Largo no Codificante , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta1/metabolismo , Gemcitabina
20.
Proc Natl Acad Sci U S A ; 111(46): 16395-400, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25359213

RESUMEN

Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-Ras(V14I), a recurrent KRAS mutation in NS patients. K-Ras(V14I)-mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-Ras(V14I)-mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Genes ras , Ratones Mutantes , Mutación Missense , Síndrome de Noonan/genética , Mutación Puntual , Proteínas Proto-Oncogénicas p21(ras)/genética , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Anomalías Múltiples/prevención & control , Alelos , Sustitución de Aminoácidos , Animales , Tamaño Corporal/genética , Linaje de la Célula , Cruzamientos Genéticos , Enanismo/genética , Epistasis Genética , Cara/anomalías , Femenino , Genes Dominantes , Genotipo , Cardiopatías Congénitas/genética , Hematopoyesis/genética , Leucemia Mielomonocítica Juvenil/genética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes/genética , Trastornos Mieloproliferativos/genética , Síndromes Neoplásicos Hereditarios/embriología , Síndromes Neoplásicos Hereditarios/genética , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Quimera por Radiación , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA