Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2321167121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776370

RESUMEN

C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a noncanonical protein serine/threonine phosphatase that has a conserved role in regulating ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with the development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of NEP1R1 generates identical phenotypes to reported loss of CTDNEP1 in mammalian cells, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high-resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a peptide sequence acting as a pseudosubstrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue in CTDNEP1 that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.


Asunto(s)
Retículo Endoplásmico , Humanos , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/química , Unión Proteica
2.
Mol Biol Cell ; 35(7): ar101, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776127

RESUMEN

Lipin 1 is an ER enzyme that produces diacylglycerol, the lipid intermediate that feeds into the synthesis of glycerophospholipids for membrane expansion or triacylglycerol for storage into lipid droplets. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but a role for CTDNEP1 in lipid storage in mammalian cells is not known. Furthermore, how NEP1R1, the regulatory subunit of CTDNEP1, contributes to these functions in mammalian cells is not fully understood. Here, we show that CTDNEP1 is reliant on NEP1R1 for its stability and function in limiting ER expansion. CTDNEP1 contains an amphipathic helix at its N-terminus that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 and NEP1R1 and show that they facilitate complex formation in vivo and in vitro. We demonstrate that NEP1R1 binding to CTDNEP1 shields CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, NEP1R1 was not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on NEP1R1 depends on cellular demands for membrane production versus lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis under different metabolic conditions.


Asunto(s)
Retículo Endoplásmico , Membrana Nuclear , Fosfatidato Fosfatasa , Retículo Endoplásmico/metabolismo , Membrana Nuclear/metabolismo , Humanos , Fosfatidato Fosfatasa/metabolismo , Animales , Metabolismo de los Lípidos , Ratones , Gotas Lipídicas/metabolismo , Células HEK293 , Unión Proteica , Lípidos/biosíntesis , Proteínas Nucleares/metabolismo
3.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464273

RESUMEN

Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.

4.
bioRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045299

RESUMEN

C-terminal Domain Nuclear Envelope Phosphatase 1 (CTDNEP1) is a non-canonical protein serine/threonine phosphatase that regulates ER membrane biogenesis. Inactivating mutations in CTDNEP1 correlate with development of medulloblastoma, an aggressive childhood cancer. The transmembrane protein Nuclear Envelope Phosphatase 1 Regulatory Subunit 1 (NEP1R1) binds CTDNEP1, but the molecular details by which NEP1R1 regulates CTDNEP1 function are unclear. Here, we find that knockdown of CTDNEP1 or NEP1R1 in human cells generate identical phenotypes, establishing CTDNEP1-NEP1R1 as an evolutionarily conserved membrane protein phosphatase complex that restricts ER expansion. Mechanistically, NEP1R1 acts as an activating regulatory subunit that directly binds and increases the phosphatase activity of CTDNEP1. By defining a minimal NEP1R1 domain sufficient to activate CTDNEP1, we determine high resolution crystal structures of the CTDNEP1-NEP1R1 complex bound to a pseudo-substrate. Structurally, NEP1R1 engages CTDNEP1 at a site distant from the active site to stabilize and allosterically activate CTDNEP1. Substrate recognition is facilitated by a conserved Arg residue that binds and orients the substrate peptide in the active site. Together, this reveals mechanisms for how NEP1R1 regulates CTDNEP1 and explains how cancer-associated mutations inactivate CTDNEP1.

5.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873275

RESUMEN

The endoplasmic reticulum (ER) is the site for the synthesis of the major membrane and storage lipids. Lipin 1 produces diacylglycerol, the lipid intermediate critical for the synthesis of both membrane and storage lipids in the ER. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but its role in lipid storage in mammalian cells is unknown. Here, we show that the ubiquitin-proteasome degradation pathway controls the levels of ER/nuclear envelope-associated CTDNEP1 to regulate ER membrane synthesis through lipin 1. The N-terminus of CTDNEP1 is an amphipathic helix that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 with its regulatory subunit NEP1R1 and show that they facilitate complex formation in vivo and in vitro . We demonstrate a role for NEP1R1 in temporarily shielding CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, we found that NEP1R1 is not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on its regulatory subunit differs during ER membrane synthesis and lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis and storage under fluctuating conditions.

6.
Bioorg Chem ; 139: 106747, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531819

RESUMEN

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Asunto(s)
Ceramidas , Ceramidasa Neutra , Dominio Catalítico , Ceramidas/química , Ceramidasa Neutra/antagonistas & inhibidores , Esfingosina/química
7.
Dev Cell ; 58(14): 1250-1265.e6, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37290445

RESUMEN

Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.


Asunto(s)
Gotas Lipídicas , Perilipina-5 , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Perilipina-5/metabolismo
8.
Nat Commun ; 14(1): 3204, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268630

RESUMEN

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Perilipina-1/metabolismo , Perilipina-3/metabolismo , Triglicéridos/metabolismo
9.
mBio ; 14(2): e0033923, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36877042

RESUMEN

Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.


Asunto(s)
Aspergilosis , Infecciones Fúngicas Invasoras , Aspergilosis Pulmonar , Animales , Ratones , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Modelos Animales de Enfermedad , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis Pulmonar/tratamiento farmacológico
10.
PLoS One ; 17(9): e0271540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048828

RESUMEN

Human alkaline ceramidase 3 (ACER3) is one of three alkaline ceramidases (ACERs) that catalyze the conversion of ceramide to sphingosine. ACERs are members of the CREST superfamily of integral-membrane hydrolases. All CREST members conserve a set of three Histidine, one Aspartate, and one Serine residue. Although the structure of ACER3 was recently reported, catalytic roles for these residues have not been biochemically tested. Here, we use ACER3 as a prototype enzyme to gain insight into this unique class of enzymes. Recombinant ACER3 was expressed in yeast mutant cells that lack endogenous ceramidase activity, and microsomes were used for biochemical characterization. Six-point mutants of the conserved CREST motif were developed that form a Zn-binding active site based on a recent crystal structure of human ACER3. Five point mutants completely lost their activity, with the exception of S77A, which showed a 600-fold decrease compared with the wild-type enzyme. The activity of S77C mutant was pH sensitive, with neutral pH partially recovering ACER3 activity. This suggested a role for S77 in stabilizing the oxyanion of the transition state. Together, these data indicate that ACER3 is a Zn2+-dependent amidase that catalyzes hydrolysis of ceramides via a similar mechanism to other soluble Zn-based amidases. Consistent with this notion, ACER3 was specifically inhibited by trichostatin A, a strong zinc chelator.


Asunto(s)
Ceramidasa Alcalina , Ceramidas , Ceramidasa Alcalina/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Ceramidasas/metabolismo , Ceramidas/metabolismo , Humanos , Hidrólisis , Zinc/metabolismo
11.
EMBO J ; 41(17): e110698, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844135

RESUMEN

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Fosfolipasa D , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
12.
Anal Biochem ; 643: 114577, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35134389

RESUMEN

Neutral ceramidase is a hydrolase of ceramide that has been implicated in multiple biologic processes, including inflammation and oncogenesis. Ceramides and other sphingolipids, belong to a family of N-acyl linked lipids that are biologically active in signaling, despite their limited structural functions. Ceramides are generally pro-apoptotic, while sphingosine and sphingosine-1-phosphate (S1P) exert proliferative and pro-oncogenic effects. Ceramidases are important regulators of ceramide levels that hydrolyze ceramide to sphingosine. Thus, ceramidase inhibition significantly increases the quantities of ceramide and its associated signaling. To better understand the function of ceramide, biochemical and cellular assays for enzymatic activity were developed and validated to identify inhibitors of human neutral ceramidase (nCDase). Here we review the measurement of nCDase activity both in vitro and in vivo.


Asunto(s)
Ceramidasa Neutra/análisis , Humanos , Ceramidasa Neutra/genética , Ceramidasa Neutra/metabolismo , Pseudomonas aeruginosa/enzimología
13.
Nat Commun ; 12(1): 5885, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620873

RESUMEN

Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3ß-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3ß-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1's substrate specificity and enable the rational design of antifungal agents targeting Sgl1.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos , Dominio Catalítico , Criptococosis , Cryptococcus neoformans/genética , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ergosterol , Femenino , Proteínas Fúngicas/genética , Glucosidasas/química , Glucosidasas/efectos de los fármacos , Glucosidasas/genética , Ensayos Analíticos de Alto Rendimiento , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular
14.
Nat Commun ; 12(1): 4718, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354069

RESUMEN

Phospholipid synthesis and fat storage as triglycerides are regulated by lipin phosphatidic acid phosphatases (PAPs), whose enzymatic PAP function requires association with cellular membranes. Using hydrogen deuterium exchange mass spectrometry, we find mouse lipin 1 binds membranes through an N-terminal amphipathic helix, the Ig-like domain and HAD phosphatase catalytic core, and a middle lipin (M-Lip) domain that is conserved in mammalian and mammalian-like lipins. Crystal structures of the M-Lip domain reveal a previously unrecognized protein fold that dimerizes. The isolated M-Lip domain binds membranes both in vitro and in cells through conserved basic and hydrophobic residues. Deletion of the M-Lip domain in lipin 1 reduces PAP activity, membrane association, and oligomerization, alters subcellular localization, diminishes acceleration of adipocyte differentiation, but does not affect transcriptional co-activation. This establishes the M-Lip domain as a dimeric protein fold that binds membranes and is critical for full functionality of mammalian lipins.


Asunto(s)
Fosfatidato Fosfatasa/química , Células 3T3-L1 , Adipogénesis , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Células HEK293 , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
15.
Adv Biol Regul ; 79: 100783, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495125

RESUMEN

Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.


Asunto(s)
Fosfolipasa D/química , Fosfolipasa D/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/genética , Transducción de Señal
16.
SLAS Discov ; 26(1): 113-121, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32734807

RESUMEN

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Ceramidasa Neutra/antagonistas & inhibidores , Ceramidasa Neutra/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales/métodos , Activación Enzimática/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Bibliotecas de Moléculas Pequeñas
17.
Nat Commun ; 11(1): 1734, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242008

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nat Chem Biol ; 16(4): 400-407, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32198492

RESUMEN

The signal transduction enzyme phospholipase D1 (PLD1) hydrolyzes phosphatidylcholine to generate the lipid second-messenger phosphatidic acid, which plays roles in disease processes such as thrombosis and cancer. PLD1 is directly and synergistically regulated by protein kinase C, Arf and Rho GTPases, and the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we present a 1.8 Å-resolution crystal structure of the human PLD1 catalytic domain, which is characterized by a globular fold with a funnel-shaped hydrophobic cavity leading to the active site. Adjacent is a PIP2-binding polybasic pocket at the membrane interface that is essential for activity. The C terminus folds into and contributes part of the catalytic pocket, which harbors a phosphohistidine that mimics an intermediate stage of the catalytic cycle. Mapping of PLD1 mutations that disrupt RhoA activation identifies the RhoA-PLD1 binding interface. This structure sheds light on PLD1 regulation by lipid and protein effectors, enabling rationale inhibitor design for this well-studied therapeutic target.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/ultraestructura , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células COS , Catálisis , Dominio Catalítico , Chlorocebus aethiops , Humanos , Lípidos de la Membrana , Fosfatidilcolinas , Unión Proteica , Proteína Quinasa C/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal/efectos de los fármacos
19.
Nat Commun ; 11(1): 1309, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161260

RESUMEN

Lipin/Pah phosphatidic acid phosphatases (PAPs) generate diacylglycerol to regulate triglyceride synthesis and cellular signaling. Inactivating mutations cause rhabdomyolysis, autoinflammatory disease, and aberrant fat storage. Disease-mutations cluster within the conserved N-Lip and C-Lip regions that are separated by 500-residues in humans. To understand how the N-Lip and C-Lip combine for PAP function, we determined crystal structures of Tetrahymena thermophila Pah2 (Tt Pah2) that directly fuses the N-Lip and C-Lip. Tt Pah2 adopts a two-domain architecture where the N-Lip combines with part of the C-Lip to form an immunoglobulin-like domain and the remaining C-Lip forms a HAD-like catalytic domain. An N-Lip C-Lip fusion of mouse lipin-2 is catalytically active, which suggests mammalian lipins function with the same domain architecture as Tt Pah2. HDX-MS identifies an N-terminal amphipathic helix essential for membrane association. Disease-mutations disrupt catalysis or destabilize the protein fold. This illustrates mechanisms for lipin/Pah PAP function, membrane association, and lipin-related pathologies.


Asunto(s)
Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/ultraestructura , Proteínas Protozoarias/ultraestructura , Dominio Catalítico/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/aislamiento & purificación , Conformación Proteica en Hélice alfa , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Tetrahymena thermophila/enzimología , Transfección
20.
J Biol Chem ; 294(18): 7488-7502, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30890560

RESUMEN

Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.


Asunto(s)
Esfingomielina Fosfodiesterasa/metabolismo , Regulación Alostérica , Aminoácidos/química , Dominio Catalítico , Activación Enzimática , Humanos , Hidroxiurea/farmacología , Mutación , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Dispersión del Ángulo Pequeño , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/genética , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA