Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem ; 175(1): 1-7, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37775269

RESUMEN

Cyclic AMP (cAMP)-protein kinase A (PKA) signaling is a highly conserved pathway in eukaryotes and plays a central role in cell signaling cascades in response to environmental changes. Elevated cAMP levels promote the activation of PKA, which phosphorylates various downstream proteins. Many cytosolic and nuclear proteins, such as metabolic enzymes and transcriptional factors, have been identified as substrates for PKA, suggesting that PKA-mediated regulation occurs predominantly in the cytosol. Mitochondrial proteins are also phosphorylated by PKA, and PKA-mediated phosphorylation of mitochondrial proteins is considered to control a variety of mitochondrial functions, including oxidative phosphorylation, protein import, morphology and quality control. In this review, we outline PKA mitochondrial substrates and summarize the regulation of mitochondrial functions through PKA-mediated phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Mitocondrias , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Cell Rep ; 42(5): 112454, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37160114

RESUMEN

PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo
3.
Nucleic Acids Res ; 49(1): 371-382, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33300043

RESUMEN

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Ribosomas Mitocondriales/metabolismo , Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Regiones no Traducidas 5' , Animales , Sistema Libre de Células , ADN/síntesis química , Escherichia coli , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Luciferasas/biosíntesis , Luciferasas/genética , Magnesio/farmacología , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/efectos de los fármacos , Ribosomas Mitocondriales/ultraestructura , Fosforilación Oxidativa , Iniciación de la Cadena Peptídica Traduccional , Factores de Elongación de Péptidos/fisiología , Péptidos/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Porcinos , Tetrahidrofolato Deshidrogenasa/biosíntesis , Tetrahidrofolato Deshidrogenasa/genética
4.
Commun Biol ; 3(1): 99, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139798

RESUMEN

LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the growth deficiency caused by gene deletion of a yeast LETM1 orthologue. Substituting amino acid residues with alanine disrupts the correct assembly of a protein complex containing LETM1 and prevents changes in the mitochondrial morphology induced by exogenous LETM1 expression. Moreover, the LETM1 protein changes the shapes of the membranes of in vitro-reconstituted proteoliposomes, leading to the formation of invaginated membrane structures on artificial liposomes. LETM1 mutant proteins with alanine substitutions fail to facilitate the formation of invaginated membrane structures, suggesting that LETM1 plays a fundamental role in the organization of mitochondrial membrane morphology.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Células HeLa , Humanos , Liposomas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Mutación , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
FEBS Lett ; 592(2): 209-218, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29251771

RESUMEN

Mitochondrial tubular structures are maintained by a balance between membrane fusion and fission that is regulated by various factors, including Drp1 and mitofusin/fzo-1. Here we report the role of cardiolipin (CL) synthase in the regulation of mitochondrial morphology. Knockdown of CL synthase induced mitochondrial elongation in nematode and human cells. Knockdown of both nematode cardiolipin synthase and drp-1 or fzo-1 suggested that knocking down CL synthase decreases mitochondrial division. Mass spectrometric analysis of human CL synthase-knocked down cells revealed a decreased amount of CL and an accumulation of phosphatidylglycerol, a CL precursor. Knockdown of other genes involved in CL synthesis did not influence mitochondrial morphology. Thus, mitochondrial elongation may result from the accumulation of phosphatidylglycerol rather than decreased CL.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Caenorhabditis elegans/genética , Cardiolipinas/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Espectrometría de Masas , Mitocondrias/genética , Dinámicas Mitocondriales , Células Musculares/metabolismo , Fosfatidilgliceroles/metabolismo
6.
J Biol Chem ; 291(31): 16162-74, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27302064

RESUMEN

Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , Muerte Celular , Células HEK293 , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Mol Cell ; 62(3): 371-384, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153535

RESUMEN

A mitochondrial kinase, PTEN-induced putative kinase 1 (PINK1), selectively recruits the ubiquitin ligase Parkin to damaged mitochondria, which modifies mitochondria by polyubiquitination, leading to mitochondrial autophagy. Here, we report that treatment with an adenylate cyclase agonist or expression of protein kinase A (PKA) impairs Parkin recruitment to damaged mitochondria and decreases PINK1 protein levels. We identified a mitochondrial membrane protein, MIC60 (also known as mitofilin), as a PKA substrate. Mutational and mass spectrometric analyses revealed that the Ser528 residue of MIC60 undergoes PKA-dependent phosphorylation. MIC60 transiently interacts with PINK1, and MIC60 downregulation leads to a reduction in PINK1 and mislocalization of Parkin. Phosphorylation-mimic mutants of MIC60 fail to restore the defect in Parkin recruitment in MIC60-knocked down cells, whereas a phosphorylation-deficient MIC60 mutant facilitates the mitochondrial localization of Parkin. Our findings indicate that PKA-mediated phosphorylation of MIC60 negatively regulates mitochondrial clearance that is initiated by PINK1 and Parkin.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Mutación , Fosforilación , Proteínas Quinasas/genética , Estabilidad Proteica , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/genética
8.
PLoS Genet ; 10(9): e1004616, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233460

RESUMEN

Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.


Asunto(s)
Codón de Terminación , Mitocondrias/genética , Mitocondrias/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Codón , Humanos , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas , Alineación de Secuencia , Porcinos
9.
Nucleic Acids Res ; 41(6): 3713-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396448

RESUMEN

The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Transporte de Electrón , GTP Fosfohidrolasas/fisiología , Células HeLa , Humanos , Proteínas Mitocondriales/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...