Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741172

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Encephalitis Virus, Japanese/physiology , Sweden , Mosquito Vectors/virology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Female , Saliva/virology , Humans
2.
Viruses ; 15(6)2023 05 30.
Article En | MEDLINE | ID: mdl-37376580

The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus-host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT.


Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Neutralization Tests , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
3.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Article En | MEDLINE | ID: mdl-35142215

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/enzymology , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacokinetics , Vero Cells
5.
Virol J ; 18(1): 109, 2021 06 02.
Article En | MEDLINE | ID: mdl-34078386

BACKGROUND: The ongoing SARS-CoV-2 pandemic has spread rapidly worldwide and disease prevention is more important than ever. In the absence of a vaccine, knowledge of the transmission routes and risk areas of infection remain the most important existing tools to prevent further spread. METHODS: Here we investigated the presence of the SARS-CoV-2 virus in the hospital environment at the Uppsala University Hospital Infectious Disease ward by RT-qPCR and determined the infectivity of the detected virus in vitro on Vero E6 cells. RESULTS: SARS-CoV-2 RNA was detected in several areas, although attempts to infect Vero E6 cells with positive samples were unsuccessful. However, RNase A treatment of positive samples prior to RNA extraction did not degrade viral RNA, indicating the presence of SARS-CoV-2 nucleocapsids or complete virus particles protecting the RNA as opposed to free viral RNA. CONCLUSION: Our results show that even in places where a moderate concentration (Ct values between 30 and 38) of SARS-CoV-2 RNA was found; no infectious virus could be detected. This suggests that the SARS-CoV-2 virus in the hospital environment subsides in two states; as infectious and as non-infectious. Future work should investigate the reasons for the non-infectivity of SARS-CoV-2 virions.


COVID-19/transmission , Cross Infection/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Environmental Monitoring/methods , Animals , Cell Line , Chlorocebus aethiops , Confined Spaces , Cross Infection/virology , Hospitals , Humans , Risk , SARS-CoV-2/growth & development , Ventilation/methods , Vero Cells
6.
Antiviral Res ; 190: 105074, 2021 06.
Article En | MEDLINE | ID: mdl-33872674

Tick-borne encephalitis (TBE) is a severe neurological disorder caused by tick-borne encephalitis virus (TBEV), a member of the Flavivirus genus. Currently, two vaccines are available in Europe against TBEV. However, TBE cases have been rising in Sweden for the past twenty years, and thousands of cases are reported in Europe, emphasizing the need for antiviral treatments against this virus. The NS2B-NS3 protease is essential for flaviviral life cycle and has been studied as a target for the design of inhibitors against several well-known flaviviruses, but not TBEV. In the present study, Compound 86, a known tripeptidic inhibitor of dengue (DENV), West Nile (WNV) and Zika (ZIKV) proteases, was predicted to be active against TBEV protease using a combination of in silico techniques. Further, Compound 86 was found to inhibit recombinant TBEV protease with an IC50 = 0.92 µM in the in vitro enzymatic assay. Additionally, two more peptidic analogues were synthetized and they displayed inhibitory activities against both TBEV and ZIKV proteases. In particular, Compound 104 inhibited ZIKV protease with an IC50 = 0.25 µM. These compounds represent the first reported inhibitors of TBEV protease to date and provides valuable information for the further development of TBEV as well as pan-flavivirus protease inhibitors.


Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Computer Simulation , Encephalitis Viruses, Tick-Borne/enzymology , Encephalitis, Tick-Borne/drug therapy , Encephalitis, Tick-Borne/virology , Molecular Docking Simulation , Peptide Hydrolases/chemistry , Protease Inhibitors/classification , Protease Inhibitors/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/metabolism
7.
Heliyon ; 7(2): e06328, 2021 Feb.
Article En | MEDLINE | ID: mdl-33644482

Possible pre- or asymptomatic transmission has been reported, both from SARS-CoV and from MERS-CoV outbreaks, although this appears to be uncommon. In contrast, during the COVID-19 pandemic, an increasing number of studies and case reports indicate that pre- or asymptomatic transmission of SARS-CoV-2 is not only possible but also occurs frequently. We report repeated rRT-PCR detection of SARS-CoV-2 in a health care worker and demonstrate infective ability up to three days prior to mild COVID-19 symptoms. rRT-PCR indicated high viral levels approximately three days after exposure. Viral samples collected one and three days prior to symptoms exhibited infectivity on Vero E6 cells, confirmed by detection of double-stranded RNA by immunofluorescence, assessment of cytopathic effect (CPE) and rRT-PCR. SARS-CoV-2 specific IgM and IgG antibodies were detected by day 9 and 15, respectively, after symptom onset. We propose that this provides evidence for potential early presymptomatic transmission of SARS-CoV-2 and that infectivity may be manifest shortly after exposure.

8.
Sci Rep ; 10(1): 19589, 2020 11 11.
Article En | MEDLINE | ID: mdl-33177563

Evidence suggests that SARS-CoV-2, as well as other coronaviruses, can be dispersed and potentially transmitted by aerosols directly or via ventilation systems. We therefore investigated ventilation openings in one COVID-19 ward and central ducts that expel indoor air from three COVID-19 wards at Uppsala University Hospital, Sweden, during April and May 2020. Swab samples were taken from individual ceiling ventilation openings and surfaces in central ducts. Samples were subsequently subjected to rRT-PCR targeting the N and E genes of SARS-CoV-2. Central ventilation HEPA filters, located several stories above the wards, were removed and portions analyzed in the same manner. In two subsequent samplings, SARS-CoV-2 N and E genes were detected in seven and four out of 19 room vents, respectively. Central ventilation HEPA exhaust filters from the ward were found positive for both genes in three samples. Corresponding filters from two other, adjacent COVID-19 wards were also found positive. Infective ability of the samples was assessed by inoculation of susceptible cell cultures but could not be determined in these experiments. Detection of SARS-CoV-2 in central ventilation systems, distant from patient areas, indicate that virus can be transported long distances and that droplet transmission alone cannot reasonably explain this, especially considering the relatively low air change rates in these wards. Airborne transmission of SARS-CoV-2 must be taken into consideration for preventive measures.


Betacoronavirus/physiology , Coronavirus Infections/transmission , Hospitals , Pneumonia, Viral/transmission , Aerosols , Animals , Betacoronavirus/genetics , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Filtration , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Ventilation , Vero Cells
9.
Redox Biol ; 37: 101734, 2020 10.
Article En | MEDLINE | ID: mdl-33007504

The ongoing SARS-CoV-2 pandemic is a global public health emergency posing a high burden on nations' health care systems and economies. Despite the great effort put in the development of vaccines and specific treatments, no prophylaxis or effective therapeutics are currently available. Nitric oxide (NO) is a broad-spectrum antimicrobial and a potent vasodilator that has proved to be effective in reducing SARS-CoV replication and hypoxia in patients with severe acute respiratory syndrome. Given the potential of NO as treatment for SARS-CoV-2 infection, we have evaluated the in vitro antiviral effect of NO on SARS-CoV-2 replication. The NO-donor S-nitroso-N-acetylpenicillamine (SNAP) had a dose dependent inhibitory effect on SARS-CoV-2 replication, while the non S-nitrosated NAP was not active, as expected. Although the viral replication was not completely abolished (at 200 µM and 400 µM), SNAP delayed or completely prevented the development of viral cytopathic effect in treated cells, and the observed protective effect correlated with the level of inhibition of the viral replication. The capacity of the NO released from SNAP to covalently bind and inhibit SARS-CoV-2 3CL recombinant protease in vitro was also tested. The observed reduction in SARS-CoV-2 protease activity was consistent with S-nitrosation of the enzyme active site cysteine.


Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Nitric Oxide Donors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Catalytic Domain/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Models, Molecular , Nitric Oxide/pharmacology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacology
10.
Infect Ecol Epidemiol ; 10(1): 1754538, 2020.
Article En | MEDLINE | ID: mdl-32363011

COVID-19 is the most rapidly growing pandemic in modern time, and the need for serological testing is most urgent. Although the diagnostics of acute patients by RT-PCR is both efficient and specific, we are also crucially in need of serological tools for investigating antibody responses and assessing individual and potential herd immunity. We evaluated a commercially available test developed for rapid (within 15 minutes) detection of SARS-CoV-2-specific IgM and IgG by 29 PCR-confirmed COVID-19 cases and 124 negative controls. The results revealed a sensitivity of 69% and 93.1% for IgM and IgG, respectively, based solely on PCR-positivity due to the absence of a serological gold standard. The assay specificities were shown to be 100% for IgM and 99.2% for IgG. This indicates that the test is suitable for assessing previous virus exposure, although negative results may be unreliable during the first weeks after infection. More detailed studies on antibody responses during and post infection are urgently needed.

11.
J Biomol Struct Dyn ; 38(18): 5526-5536, 2020 Nov.
Article En | MEDLINE | ID: mdl-31880199

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus and infection by ZIKV Asian lineage is known to cause fetal brain anomalies and Guillain-Barrés syndrome. The WHO declared ZIKV a global public health emergency in 2016. However, currently neither vaccines nor antiviral prophylaxis/treatments are available. In this study, we report the identification of a C2-symmetric diol-based Human immunodeficiency virus type-1 (HIV) protease inhibitor active against ZIKV NS2B-NS3 protease. The compound, referred to as 9b, was identified by in silico screening of a library of 6265 protease inhibitors. Molecular dynamics (MD) simulation studies revealed that compound 9b formed a stable complex with ZIKV protease. Interaction analysis of compound 9b's binding pose from the cluster analysis of MD simulations trajectories predicted that 9b mostly interacted with ZIKV NS3. Although designed as an aspartyl protease inhibitor, compound 9b was found to inhibit ZIKV serine protease in vitro with IC50 = 143.25 ± 5.45 µM, in line with the in silico results. Additionally, linear interaction energy method (LIE) was used to estimate binding affinities of compounds 9b and 86 (a known panflavivirus peptide hybrid with IC50 = 1.64 ± 0.015 µM against ZIKV protease). The LIE method correctly predicted the binding affinity of compound 86 to be lower than that of 9b, proving to be superior to the molecular docking methods in scoring and ranking compounds. Since most of the reported ZIKV protease inhibitors are positively charged peptide-hybrids, with our without electrophilic warheads, compound 9b represents a less polar and more drug-like non-peptide hit compound useful for further optimization.Communicated by Ramaswamy Sarma.


Antiviral Agents , Human Immunodeficiency Virus Proteins , Zika Virus Infection , Zika Virus , Animals , HIV , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins , Zika Virus Infection/drug therapy
12.
Scand J Gastroenterol ; 54(8): 1042-1050, 2019 Aug.
Article En | MEDLINE | ID: mdl-31424972

Background: The NS5A resistance-associated substitution (RAS) Y93H is found quite frequently (5-10%) at baseline in direct-acting antiviral agents (DAA) treatment-naïve genotype (GT) 3a patients when studied by the population-sequencing method (cut-off 20%). This RAS may impair HCV DAA treatment response, since it possesses a high fold in vitro resistance to daclatasvir (DCV) and velpatasvir (VEL) in GT 3. We investigated the effect of baseline Y93H in patients with GT 3a infection on treatment outcome, with or without resistance-based DAA-treatment during 2014-2017. Patients/Methods: Treatment in the intervention group (n = 130) was tailored to baseline resistance-findings by population-sequencing method. Detection of baseline Y93H above 20% prompted a prolonged treatment duration of NS5A-inhibitor and sofosbuvir (SOF) and/or addition of ribavirin (RBV). Patients without baseline Y93H in the intervention group and all patients in the control group (n = 78) received recommended standard DAA-treatment. Results: A higher sustained virologic response rate (SVR) in the intervention group was shown compared to the control group at 95.4% (124/130) and 88.5% (69/78), respectively (p = .06). All five patients with baseline Y93H in the intervention group achieved SVR with personalised treatment based on results from resistance testing; either with the addition of RBV or prolonged treatment duration (24w). In the control group, 2/4 patients with Y93H at baseline treated with ledipasvir/SOF/RBV or DCV/SOF without RBV, failed treatment. Conclusion: The results from this real-life study are in accordance with the findings of the randomised controlled trials in 2015 and the EASL-guidelines of 2016, thus, baseline Y93H impacts on DCV and VEL treatment outcome.


Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Hepatitis C/drug therapy , Viral Nonstructural Proteins/genetics , Adult , Aged , Drug Therapy, Combination , Female , Genotype , Hepacivirus/genetics , Humans , Male , Middle Aged , Norway , Sustained Virologic Response , Sweden , Treatment Failure , Young Adult
13.
Scand J Gastroenterol ; 53(10-11): 1347-1353, 2018.
Article En | MEDLINE | ID: mdl-30394152

OBJECTIVES: Resistance-associated substitutions (RASs) may impair treatment response to direct-acting antivirals (DAA) in hepatitis C virus (HCV) treatment. We investigated the effects of baseline NS3-RASs (Q80K and R155K) and clinically relevant NS5A-RASs in patients with HCV genotype (GT) 1a infection on treatment outcome, with or without resistance-based DAA-treatment. This multi-center study was carried out between 2014 and 2016. PATIENTS/METHODS: Treatment in the intervention group (n = 92) was tailored to baseline resistance. Detection of NS3-RAS led to an NS5A-inhibitor-based regimen and detection of NS5A-RAS to a protease-inhibitor regimen. Patients without baseline RAS in the intervention group and all patients in the control group (n = 101) received recommended standard DAA-treatment. RESULTS: The sustained virologic response rates (SVR) in the intervention and control groups were 97.8% (90/92) and 93.1% (94/101), respectively (p = .174). A trend toward higher SVR-rate in cirrhotic patients (p = .058) was noticed in the intervention group compared to the control group with SVR-rates 97.5% (39/40) and 83.3% (35/42), respectively. All patients with baseline NS3 (Q80K/R155K) or NS5A-RASs in the intervention group achieved SVR with personalized resistance-based treatment. In the control group, five patients with Q80K or R155K at baseline were treated with simeprevir + sofosbuvir and treatment failed in two of them. Furthermore, one of three patients who failed ledipasvir + sofosbuvir treatment had NS5A-RASs at baseline. CONCLUSIONS: In line with the findings of the OPTIMIST-2 trial for Q80K and the EASL-guidelines 2016 for NS5A-RASs, baseline RASs appeared to have an impact on treatment outcome albeit a statistical significance was not observed in this low-prevalence population.


Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Hepatitis C/drug therapy , Viral Nonstructural Proteins/genetics , Adult , Aged , Amino Acid Substitution , Antiviral Agents/economics , Drug Therapy, Combination , Female , Genotype , Hepacivirus/genetics , Humans , Male , Middle Aged , Norway , Sustained Virologic Response , Sweden , Treatment Failure
14.
Infect Ecol Epidemiol ; 8(1): 1528117, 2018.
Article En | MEDLINE | ID: mdl-30319736

Background: Current combination treatments with direct-acting antiviral agents (DAAs) can cure more than 95% of hepatitis C virus (HCV) infections. However, resistance-associated substitutions (RASs) may emerge and can also be present in treatment-naïve patients. Methods, results and discussion: In this study, a semi-pan-genotypic population sequencing method was developed and used to assess all NS5B amino acid variants between residue positions 310 and 564. Our method successfully sequenced more than 90% of genotype (GT) 1a, 1b, 2b and 3a samples. By using the population sequencing method with a cut-off of 20%, we found the dasabuvir RASs A553V and C445F to be a baseline polymorphism of GT 2b (8 out of 8) and GT 3a (18 out of 18) sequences, respectively. In GT 1a and 1b treatment-naïve subjects (n=25), no high-fold resistance polymorphism/RASs were identified. We further predicted dasabuvir's binding pose with the NS5B polymerase using the in silico methods to elucidate the reasons associated with the resistance of clinically relevant RASs. Dasabuvir was docked at the palm-I site and was found to form hydrogen bonds with the residues S288, I447, Y448, N291 and D318. The RAS positions 316, 414, 448, 553 and 556 were found to constitute the dasabuvir binding pocket.

15.
Pathog Glob Health ; 112(4): 210-226, 2018 06.
Article En | MEDLINE | ID: mdl-29745301

Alkhumra hemorrhagic fever virus (AHFV), a relatively new member of the Flaviviruses, was discovered in Saudi Arabia 23 years ago. AHFV is classified in the tick-borne encephalitis virus serocomplex, along with the Kyasanur forest disease virus (KFDV) and tick-borne encephalitis virus (TBEV). Currently, very little is known about the pathologies of AHFV. In this study, using the available genome information of AHFV, KFDV and TBEV, we have predicted and compared the following aspects of these viruses: evolution, nucleotide and protein compositions, recombination, codon frequency, substitution rate, N- and O-glycosylation sites, signal peptide and cleavage site, transmembrane region, secondary structure of 5' and 3' UTRs and RNA-RNA interactions. Additionally, we have modeled the 3D protease and RNA-dependent RNA polymerase structures for AHFV, KFDV and TBEV. Recombination analysis showed no evidence of recombination in the AHFV genome with that of either KFDV or TBEV, although single break point analysis showed that nucleotide position 7399 (in the NS4B) is a breakpoint location. AHFV, KFDV and TBEV are very similar in terms of codon frequency, the number of transmembrane regions, properties of the polyprotein, RNA-RNA interaction sequences, NS3 protease and NS5 polymerase structures and 5' UTR structure. Using genome sequences, we showed the similarities between these closely- related viruses on several different areas.


Computational Biology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Genome, Viral , Encephalitis Viruses, Tick-Borne/isolation & purification , Evolution, Molecular , Genetic Variation , Humans , Nucleic Acid Conformation , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Recombination, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics
16.
Antivir Ther ; 23(6): 485-493, 2018.
Article En | MEDLINE | ID: mdl-29745936

BACKGROUND: HCV infections can now be completely cured, thanks to the currently marketed direct-acting antivirals (DAAs). It is known that HCV patients carry viral populations with baseline polymorphisms and/or mutations that make them resistant against some of these DAAs, which can negatively impact the patient's treatment outcome. Using complete HCV coding sequences isolated from 1,306 treatment-naive patients of genotypes (GTs) 1, 2, 3, 4 and 6 from around the globe, we studied the prevalence of baseline resistance-associated polymorphisms (RAPs) and resistance mutations (RMs) against DAAs that are currently on the market or in clinical trials. METHODS: The HCV genome sequences used in this study were retrieved from the NCBI database. RAPs and RMs, with reference to HCV GT1a, were identified using the HCV Geno2pheno web server. RESULTS: Nearly 50% of the total amino acid positions (including NS3 protease, NS5A and NS5B) studied are baseline polymorphisms that differentiated one GT from the rest. A proportion of these baseline polymorphisms and baseline non-polymorphic RMs could confer a significant increase in resistance against DAAs. CONCLUSIONS: In this study, we show the presence and prevalence of RAPs and RMs in DAA treatment-naive patients against currently used DAAs or DAAs in clinical trials. Our study suggests that RAPs and RMs profiling of HCV patients should be performed before the start of the therapy. Our results should be relevant especially in low- and middle-income countries, where the patients have a large variation of GTs and subtypes, and where the generic HCV treatment is now increasingly available.


Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Genome, Viral , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Polymorphism, Genetic , Viral Nonstructural Proteins/genetics , Africa/epidemiology , Americas/epidemiology , Europe/epidemiology , Gene Expression , Genotype , Hepacivirus/enzymology , Hepacivirus/genetics , Hepatitis C, Chronic/epidemiology , Hepatitis C, Chronic/virology , Humans , Isoenzymes/genetics , Mutation , Oceania/epidemiology , Pharmacogenetics/methods , Prevalence
17.
Mol Phylogenet Evol ; 118: 58-63, 2018 01.
Article En | MEDLINE | ID: mdl-28951254

Viruses belonging to the Flaviviridae family have been an important health concern for humans, animals and birds alike. No specific treatment is available yet for many of the viral infections caused by the members of this family. Lack of specific drugs against these viruses is mainly due to lack of protein structure information. It has been known that protein backbone fluctuation pattern is highly conserved in protein pairs with similar folds, in spite of the lack of sequence similarity. We hypothesized that this concept should also hold true for proteins (especially enzymes) of viruses included in different genera of the Flaviviridae family, as we know that the sequence similarity between them is low. Using available NS3 protease crystal structures of the Flaviviridae family, our preliminary results have shown that the Cα (i.e. backbone) fluctuation patterns are highly similar between Flaviviruses and a Hepacivirus (i.e. hepatitis C virus, HCV). This has to be validated further experimentally.


Evolution, Molecular , Flavivirus/enzymology , Hepacivirus/enzymology , Viral Nonstructural Proteins/classification , Amino Acid Sequence , Animals , Humans , Likelihood Functions , Phylogeny , Protein Structure, Tertiary , RNA Helicases/chemistry , RNA Helicases/classification , RNA Helicases/genetics , Sequence Alignment , Serine Endopeptidases/chemistry , Serine Endopeptidases/classification , Serine Endopeptidases/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
...