Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz. j. biol ; 84: e259351, 2024. tab, graf, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1384096

RESUMEN

Zinc oxide nanoparticles were synthesized from the leaf extract of Brassica oleracea L. Acephala group (collard green) followed by their characterization using Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX). The antibacterial properties of zinc nanoparticles were tested against Gram-negative bacteria, Pseudomonas aeruginosa (ATCC ® 9027™), Escherichia coli (ATCC ® 8739™), Klebsiella pneumoniae (ATCC® BAA-1705™) and Gram-positive bacteria, Staphylococcus aureus (ATCC ® 6538™) and Listeria monocytogenes (ATCC ® 13932™), at four different concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of zinc oxide nanoparticles suspension. Results revealed that the synthesized nanoparticles exhibit strong antibacterial effects against Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli at 500.00 µg/ml-1 mg/ml concentrations. An increase in efficacy of nanoparticles with the decrease of their size was also evident. This is a first ever report on Brassica oleracea, L. based nanoparticles which demonstrates that 500.00 µg-1 mg/ml conc. of zinc oxide nanoparticles have antibacterial activity against both Gram -ve and Gram +ve bacteria and have the potential to be considered as an antibacterial agent in future.


Nanopartículas de óxido de zinco foram sintetizadas a partir do extrato foliar de Brassica oleracea L., grupo Acephala (couve), seguidas de sua caracterização em Microscópio Eletrônico de Varredura (MEV) e Raio X por Energia Dispersiva (EDX). As propriedades antibacterianas das nanopartículas de zinco foram testadas em bactérias Gram-negativas, Pseudomonas aeruginosa (ATCC® 9027™), Escherichia coli (ATCC® 8739™) e Klebsiella pneumoniae (ATCC® BAA-1705™), e bactérias Gram-positivas, Staphylococcus aureus (ATCC® 6538™) e Listeria monocytogenes (ATCC® 13932™), em quatro concentrações diferentes (50,00 µg / ml; 100,00 µg / ml; 500,00 µg / ml; e 1 mg / ml) de suspensão de nanopartículas de óxido de zinco. Os resultados revelaram que as nanopartículas sintetizadas exibem fortes efeitos antibacterianos contra P. aeruginosa, L. monocytogenes, K. pneumonia, S. aureus e E. coli em concentrações de 500,00 µg / ml-1 mg / ml. Um aumento na eficácia das nanopartículas com a diminuição de seu tamanho também foi evidente. Este é o primeiro relatório sobre nanopartículas à base de B. oleracea L. que demonstra que 500,00 µg-1 mg / ml de concentração de nanopartículas de óxido de zinco têm atividade antibacteriana contra bactérias Gram-negativas e Gram-positivas e que essas nanopartículas têm potencial para ser consideradas um agente antibacteriano no futuro.


Asunto(s)
Óxido de Zinc , Brassica , Nanopartículas , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas
2.
Braz J Biol ; 84: e259351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35830130

RESUMEN

Zinc oxide nanoparticles were synthesized from the leaf extract of Brassica oleracea L. Acephala group (collard green) followed by their characterization using Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX). The antibacterial properties of zinc nanoparticles were tested against Gram-negative bacteria, Pseudomonas aeruginosa (ATCC ® 9027™), Escherichia coli (ATCC ® 8739™), Klebsiella pneumoniae (ATCC® BAA-1705™) and Gram-positive bacteria, Staphylococcus aureus (ATCC ® 6538™) and Listeria monocytogenes (ATCC ® 13932™), at four different concentrations (50.00 µg/ml, 100.00 µg/ml, 500.00 µg/ml and 1 mg/ml) of zinc oxide nanoparticles suspension. Results revealed that the synthesized nanoparticles exhibit strong antibacterial effects against Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli at 500.00 µg/ml-1 mg/ml concentrations. An increase in efficacy of nanoparticles with the decrease of their size was also evident. This is a first ever report on Brassica oleracea, L. based nanoparticles which demonstrates that 500.00 µg-1 mg/ml conc. of zinc oxide nanoparticles have antibacterial activity against both Gram -ve and Gram +ve bacteria and have the potential to be considered as an antibacterial agent in future.


Asunto(s)
Antibacterianos/farmacología , Brassica , Nanopartículas del Metal , Óxido de Zinc , Bacterias/clasificación , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Brassica/química , Pruebas de Sensibilidad Microbiana , Óxido de Zinc/farmacología
3.
Biol Res ; 53(1): 37, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32847618

RESUMEN

BACKGROUND: Soil salinity causes huge economic losses to agriculture productivity in arid and semiarid areas worldwide. The affected plants face disturbances in osmotic adjustment, nutrient transport, ionic toxicity and reduced photosynthesis. Conventional breeding approaches produce little success in combating various stresses in plants. However, non-conventional approaches, such as in vitro tissue culturing, produce genetic variability in the development of salt-tolerant plants, particularly in woody trees. RESULTS: Embryogenic callus cultures of the date palm cultivar Khalas were subjected to various salt levels ranging from 0 to 300 mM in eight subcultures. The regenerants obtained from the salt-treated cultures were regenerated and evaluated using the same concentration of NaCl with which the calli were treated. All the salt-adapted (SA) regenerants showed improved growth characteristics, physiological performance, ion concentrations and K+/Na+ ratios than the salt non-adapted (SNA) regenerants and the control. Regression between the leaf Na+ concentration and net photosynthesis revealed an inverse nonlinear correlation in the SNA regenerants. Leaf K+ contents and stomatal conductance showed a strong linear relationship in SA regenerants compared with the inverse linear correlation, and a very poor coefficient of determination in SNA regenerants. The genetic fidelity of the selected SA regenerants was also tested using 36 random amplified polymorphic DNA (RAPD) primers, of which 26 produced scorable bands. The primers generated 1-10 bands, with an average of 5.4 bands per RAPD primer; there was no variation between SA regenerants and the negative control. CONCLUSION: This is the first report of the variants generated from salt-stressed cultures and their potential adaptation to salinity in date palm cv. Khalas. The massive production of salt stress-adapted date palm plants may be much easier using the salt adaptation approach. Such plants can perform better during exposure to salt stress compared to the non-treated date palm plants.


Asunto(s)
Aclimatación , Phoeniceae/genética , Tolerancia a la Sal/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Salinidad
4.
Biol. Res ; 53: 37, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1131883

RESUMEN

BACKGROUND: Soil salinity causes huge economic losses to agriculture productivity in arid and semiarid areas world-wide. The affected plants face disturbances in osmotic adjustment, nutrient transport, ionic toxicity and reduced photosynthesis. Conventional breeding approaches produce little success in combating various stresses in plants. However, non-conventional approaches, such as in vitro tissue culturing, produce genetic variability in the development of salt-tolerant plants, particularly in woody trees. RESULTS: Embryogenic callus cultures of the date palm cultivar Khalas were subjected to various salt levels ranging from 0 to 300 mM in eight subcultures. The regenerants obtained from the salt-treated cultures were regenerated and evaluated using the same concentration of NaCl with which the calli were treated. All the salt-adapted (SA) regenerants showed improved growth characteristics, physiological performance, ion concentrations and K+/Na+ ratios than the salt non-adapted (SNA) regenerants and the control. Regression between the leaf Na+ concentration and net photosynthesis revealed an inverse nonlinear correlation in the SNA regenerants. Leaf K+ contents and stomatal conductance showed a strong linear relationship in SA regenerants compared with the inverse linear correlation, and a very poor coefficient of determination in SNA regenerants. The genetic fidelity of the selected SA regenerants was also tested using 36 random amplified polymorphic DNA (RAPD) primers, of which 26 produced scorable bands. The primers generated 1-10 bands, with an average of 5.4 bands per RAPD primer; there was no variation between SA regenerants and the negative control. CONCLUSION: This is the first report of the variants generated from salt-stressed cultures and their potential adaptation to salinity in date palm cv. Khalas. The massive production of salt stress-adapted date palm plants may be much easier using the salt adaptation approach. Such plants can perform better during exposure to salt stress compared to the non-treated date palm plants.


Asunto(s)
Tolerancia a la Sal/genética , Phoeniceae/genética , Aclimatación , Técnica del ADN Polimorfo Amplificado Aleatorio , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA