Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36963402

RESUMEN

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Plasmodium , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Plasmodium/metabolismo , Artemisininas/química , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
2.
Structure ; 29(7): 755-767.e4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761323

RESUMEN

Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase (MetAP). Trigger factor (TF), the only ribosome-associated bacterial chaperone, offers co-translational chaperoning assistance. Here, we present two high-resolution cryoelectron microscopy structures of tRNA-bound E. coli ribosome complexes showing simultaneous binding of PDF and TF, in the absence (3.4 Å) and presence of MetAP (4.1 Å). These structures establish molecular details of the interactions of the factors with the ribosome, and thereby reveal the structural basis of nascent chain processing. Our results suggest that simultaneous binding of all three factors is not a functionally favorable mechanism of nascent chain processing. Strikingly, an unusual structural distortion of the 70S ribosome, potentially driven by binding of multiple copies of MetAP, is observed when MetAP is incubated with a pre-formed PDF-TF-bound ribosome complex.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/química , Amidohidrolasas/química , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Modelos Moleculares , Complejos Multiproteicos/química , Isomerasa de Peptidilprolil/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química
3.
J Chem Inf Model ; 60(5): 2448-2457, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32163280

RESUMEN

A giant technological leap in the field of cryo-electron microscopy (cryo-EM) has assured the achievement of near-atomic resolution structures of biological macromolecules. As a recognition of this accomplishment, the Nobel Prize in Chemistry was awarded in 2017 to Jacques Dubochet, Joachim Frank, and Richard Henderson, the pioneers in the field of cryo-EM. Currently, the technique has become the method of choice for structural analysis of heterogeneous and intrinsically dynamic biological complexes. In the past few years, the most prolific branch of cryo-EM, single particle analysis, has revolutionized the structural biology field and structural investigation of membrane proteins, in particular. To achieve high-resolution structures of macromolecules in noncrystalline specimens, from sample and grid preparation to image acquisition, image data processing, and analysis of 3D maps, methodological advances in each of the steps play critical roles. In this Review, we discuss two areas in single particle cryo-EM, the remarkable developments in sample preparation strategies, particularly for membrane proteins, and breakthroughs in methodologies for molecular model building on the high-resolution 3D density maps that brought promises to resolve high-resolution (<4 Å) structures of biological macromolecules.


Asunto(s)
Proteínas de la Membrana , Imagen Individual de Molécula , Microscopía por Crioelectrón , Sustancias Macromoleculares , Modelos Moleculares
4.
J Mol Biol ; 431(7): 1426-1439, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30753870

RESUMEN

During protein biosynthesis in bacteria, one of the earliest events that a nascent polypeptide chain goes through is the co-translational enzymatic processing. The event includes two enzymatic pathways: deformylation of the N-terminal methionine by the enzyme peptide deformylase (PDF), followed by methionine excision catalyzed by methionine aminopeptidase (MetAP). During the enzymatic processing, the emerging nascent protein likely remains shielded by the ribosome-associated chaperone trigger factor. The ribosome tunnel exit serves as a stage for recruiting proteins involved in maturation processes of the nascent chain. Co-translational processing of nascent chains is a critical step for subsequent folding and functioning of mature proteins. Here, we present cryo-electron microscopy structures of Escherichia coli (E. coli) ribosome in complex with the nascent chain processing proteins. The structures reveal overlapping binding sites for PDF and MetAP when they bind individually at the tunnel exit site, where L22-L32 protein region provides primary anchoring sites for both proteins. In the absence of PDF, trigger factor can access ribosomal tunnel exit when MetAP occupies its primary binding site. Interestingly, however, in the presence of PDF, when MetAP's primary binding site is already engaged, MetAP has a remarkable ability to occupy an alternative binding site adjacent to PDF. Our study, thus, discloses an unexpected mechanism that MetAP adopts for context-specific ribosome association.


Asunto(s)
Aminopeptidasas/química , Microscopía por Crioelectrón/métodos , Metaloendopeptidasas/química , Biosíntesis de Proteínas , Modificación Traduccional de las Proteínas , Ribosomas/química , Amidohidrolasas , Aminopeptidasas/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metaloendopeptidasas/metabolismo , Metionina , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Ribosomas/metabolismo
5.
Environ Sci Technol ; 47(22): 13122-31, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24144189

RESUMEN

Manganese (Mn) is an essential element for plants which intervenes mainly in photosynthesis. In this study we establish that manganese nanoparticles (MnNP) work as a better micronutrient than commercially available manganese salt, MnSO4 (MS) at recommended doses on leguminous plant mung bean (Vigna radiata) under laboratory condition. At higher doses it does not impart toxicity to the plant unlike MS. MnNP-treated chloroplasts show greater photophosphorylation, oxygen evolution with respect to control and MS-treated chloroplasts as determined by biophysical and biochemical techniques. Water splitting by an oxygen evolving complex is enhanced by MnNP in isolated chloroplast as confirmed by polarographic and spectroscopic techniques. Enhanced activity of the CP43 protein of a photosystem II (PS II) Mn4Ca complex influenced better phosphorylation in the electron transport chain in the case of MnNP-treated chloroplast, which is evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and corresponding Western blot analysis. To the best of our knowledge this is the first report to augment photosynthesis using MnNP and its detailed correlation with different molecular, biochemical and biophysical parameters of photosynthetic pathways. At effective dosage, MnNP is found to be biosafe both in plant and animal model systems. Therefore MnNP would be a novel potential nanomodulator of photochemistry in the agricultural sector.


Asunto(s)
Fabaceae/metabolismo , Manganeso/farmacología , Nanopartículas del Metal/química , Fotoquímica , Biomasa , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Fabaceae/efectos de los fármacos , Fabaceae/crecimiento & desarrollo , Nanopartículas del Metal/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA