Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29483110

RESUMEN

Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


Asunto(s)
Oro/farmacología , Sustancias Intercalantes/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Humanos , Compuestos Macrocíclicos/farmacología , Mycobacterium abscessus/aislamiento & purificación , Mycobacterium abscessus/metabolismo , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo
2.
J Am Chem Soc ; 136(15): 5670-82, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24694294

RESUMEN

Topoisomerase IB (Top1) is a key eukaryotic nuclear enzyme that regulates the topology of DNA during replication and gene transcription. Anticancer drugs that block Top1 are either well-characterized interfacial poisons or lesser-known catalytic inhibitor compounds. Here we describe a new class of cytotoxic redox-stable cationic Au(3+) macrocycles which, through hierarchical cluster analysis of cytotoxicity data for the lead compound, 3, were identified as either poisons or inhibitors of Top1. Two pivotal enzyme inhibition assays prove that the compounds are true catalytic inhibitors of Top1. Inhibition of human topoisomerase IIα (Top2α) by 3 was 2 orders of magnitude weaker than its inhibition of Top1, confirming that 3 is a type I-specific catalytic inhibitor. Importantly, Au(3+) is essential for both DNA intercalation and enzyme inhibition. Macromolecular simulations show that 3 intercalates directly at the 5'-TA-3' dinucleotide sequence targeted by Top1 via crucial electrostatic interactions, which include π-π stacking and an Au···O contact involving a thymine carbonyl group, resolving the ambiguity of conventional (drug binds protein) vs unconventional (drug binds substrate) catalytic inhibition of the enzyme. Surface plasmon resonance studies confirm the molecular mechanism of action elucidated by the simulations.


Asunto(s)
Oro/química , Compuestos Macrocíclicos/química , Inhibidores de Topoisomerasa I/química , Catálisis , Cristalografía por Rayos X , Humanos
3.
Acta Crystallogr C ; 69(Pt 3): 258-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23459351

RESUMEN

The Schiff base enaminones (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one, C13H17NO4S, (I), and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one, C15H21NO2, (II), were studied by X-ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C-C=C-N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino-phenol group canted relative to the rest of the molecule; the twist about the N(enamine)-C(aryl) bond leads to dihedral angles of 40.5 (2) and -116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N-H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one-dimensional hydrogen-bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H-O hydrogen bond, and consequently also forms a one-dimensional hydrogen-bonded chain. The DFT-calculated structures [in vacuo, B3LYP/6-311G(d,p) level] for the keto tautomers compare favourably with the X-ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol(-1) lower in energy than the enol tautomers for (I) and (II), respectively.

4.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 12): o3354-5, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23476190

RESUMEN

The title compound, C16H20N4·H2O, was synthesized from cis-1,2-diamino-cyclo-hexane (a racemic mixture of the (1R,2S) and (1S,2R) enanti-omers). The compound crystallized with two mol-ecules (A and B) in the asymmetric unit with a single water solvent mol-ecule per Schiff base mol-ecule. Mol-ecules A and B have similar conformations as illustrated by the least-squares-fit with an r.m.s. deviation of 0.242 Å. The mol-ecules within the asymmetric unit are bridged by hydrogen bonds to the two water mol-ecules, resulting in a heterotetramer. The water mol-ecule acts as both a hydrogen-bond donor and acceptor. The pyrrole-imine units are not co-planar, making an angle of 73.9 (3)° and 76.9 (3)° in mol-ecules A and B, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA