Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Eur J Nucl Med Mol Imaging ; 51(6): 1516-1529, 2024 May.
Article En | MEDLINE | ID: mdl-38267686

PURPOSE: Accurate dosimetry is critical for ensuring the safety and efficacy of radiopharmaceutical therapies. In current clinical dosimetry practice, MIRD formalisms are widely employed. However, with the rapid advancement of deep learning (DL) algorithms, there has been an increasing interest in leveraging the calculation speed and automation capabilities for different tasks. We aimed to develop a hybrid transformer-based deep learning (DL) model that incorporates a multiple voxel S-value (MSV) approach for voxel-level dosimetry in [177Lu]Lu-DOTATATE therapy. The goal was to enhance the performance of the model to achieve accuracy levels closely aligned with Monte Carlo (MC) simulations, considered as the standard of reference. We extended our analysis to include MIRD formalisms (SSV and MSV), thereby conducting a comprehensive dosimetry study. METHODS: We used a dataset consisting of 22 patients undergoing up to 4 cycles of [177Lu]Lu-DOTATATE therapy. MC simulations were used to generate reference absorbed dose maps. In addition, MIRD formalism approaches, namely, single S-value (SSV) and MSV techniques, were performed. A UNEt TRansformer (UNETR) DL architecture was trained using five-fold cross-validation to generate MC-based dose maps. Co-registered CT images were fed into the network as input, whereas the difference between MC and MSV (MC-MSV) was set as output. DL results are then integrated to MSV to revive the MC dose maps. Finally, the dose maps generated by MSV, SSV, and DL were quantitatively compared to the MC reference at both voxel level and organ level (organs at risk and lesions). RESULTS: The DL approach showed slightly better performance (voxel relative absolute error (RAE) = 5.28 ± 1.32) compared to MSV (voxel RAE = 5.54 ± 1.4) and outperformed SSV (voxel RAE = 7.8 ± 3.02). Gamma analysis pass rates were 99.0 ± 1.2%, 98.8 ± 1.3%, and 98.7 ± 1.52% for DL, MSV, and SSV approaches, respectively. The computational time for MC was the highest (~2 days for a single-bed SPECT study) compared to MSV, SSV, and DL, whereas the DL-based approach outperformed the other approaches in terms of time efficiency (3 s for a single-bed SPECT). Organ-wise analysis showed absolute percent errors of 1.44 ± 3.05%, 1.18 ± 2.65%, and 1.15 ± 2.5% for SSV, MSV, and DL approaches, respectively, in lesion-absorbed doses. CONCLUSION: A hybrid transformer-based deep learning model was developed for fast and accurate dose map generation, outperforming the MIRD approaches, specifically in heterogenous regions. The model achieved accuracy close to MC gold standard and has potential for clinical implementation for use on large-scale datasets.


Octreotide , Octreotide/analogs & derivatives , Organometallic Compounds , Radiometry , Radiopharmaceuticals , Single Photon Emission Computed Tomography Computed Tomography , Humans , Octreotide/therapeutic use , Organometallic Compounds/therapeutic use , Single Photon Emission Computed Tomography Computed Tomography/methods , Radiometry/methods , Radiopharmaceuticals/therapeutic use , Precision Medicine/methods , Deep Learning , Male , Female , Monte Carlo Method , Image Processing, Computer-Assisted/methods , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/diagnostic imaging
2.
EJNMMI Phys ; 10(1): 82, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38091168

PURPOSE: 90Y SPECT-based dosimetry following radioembolization (RE) in liver malignancies is challenging due to the inherent scatter and the poor spatial resolution of bremsstrahlung SPECT. This study explores a deep-learning-based absorbed dose-rate estimation method for 90Y that mitigates the impact of poor SPECT image quality on dosimetry and the accuracy-efficiency trade-off of Monte Carlo (MC)-based scatter estimation and voxel dosimetry methods. METHODS: Our unified framework consists of three stages: convolutional neural network (CNN)-based bremsstrahlung scatter estimation, SPECT reconstruction with scatter correction (SC) and absorbed dose-rate map generation with a residual learning network (DblurDoseNet). The input to the framework is the measured SPECT projections and CT, and the output is the absorbed dose-rate map. For training and testing under realistic conditions, we generated a series of virtual patient phantom activity/density maps from post-therapy images of patients treated with 90Y-RE at our clinic. To train the scatter estimation network, we use the scatter projections for phantoms generated from MC simulation as the ground truth (GT). To train the dosimetry network, we use MC dose-rate maps generated directly from the activity/density maps of phantoms as the GT (Phantom + MC Dose). We compared performance of our framework (SPECT w/CNN SC + DblurDoseNet) and MC dosimetry (SPECT w/CNN SC + MC Dose) using normalized root mean square error (NRMSE) and normalized mean absolute error (NMAE) relative to GT. RESULTS: When testing on virtual patient phantoms, our CNN predicted scatter projections had NRMSE of 4.0% ± 0.7% on average. For the SPECT reconstruction with CNN SC, we observed a significant improvement on NRMSE (9.2% ± 1.7%), compared to reconstructions with no SC (149.5% ± 31.2%). In terms of virtual patient dose-rate estimation, SPECT w/CNN SC + DblurDoseNet had a NMAE of 8.6% ± 5.7% and 5.4% ± 4.8% in lesions and healthy livers, respectively; compared to 24.0% ± 6.1% and 17.7% ± 2.1% for SPECT w/CNN SC + MC Dose. In patient dose-rate maps, though no GT was available, we observed sharper lesion boundaries and increased lesion-to-background ratios with our framework. For a typical patient data set, the trained networks took ~ 1 s to generate the scatter estimate and ~ 20 s to generate the dose-rate map (matrix size: 512 × 512 × 194) on a single GPU (NVIDIA V100). CONCLUSION: Our deep learning framework, trained using true activity/density maps, has the potential to outperform non-learning voxel dosimetry methods such as MC that are dependent on SPECT image quality. Across comprehensive testing and evaluations on multiple targeted lesions and healthy livers in virtual patients, our proposed deep learning framework demonstrated higher (66% on average in terms of NMAE) estimation accuracy than the current "gold-standard" MC method. The enhanced computing speed with our framework without sacrificing accuracy is highly relevant for clinical dosimetry following 90Y-RE.

3.
EJNMMI Res ; 13(1): 63, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37395912

BACKGROUND: Selective internal radiation therapy with 90Y radioembolization aims to selectively irradiate liver tumours by administering radioactive microspheres under the theragnostic assumption that the pre-therapy injection of 99mTc labelled macroaggregated albumin (99mTc-MAA) provides an estimation of the 90Y microspheres biodistribution, which is not always the case. Due to the growing interest in theragnostic dosimetry for personalized radionuclide therapy, a robust relationship between the delivered and pre-treatment radiation absorbed doses is required. In this work, we aim to investigate the predictive value of absorbed dose metrics calculated from 99mTc-MAA (simulation) compared to those obtained from 90Y post-therapy SPECT/CT. RESULTS: A total of 79 patients were analysed. Pre- and post-therapy 3D-voxel dosimetry was calculated on 99mTc-MAA and 90Y SPECT/CT, respectively, based on Local Deposition Method. Mean absorbed dose, tumour-to-normal ratio, and absorbed dose distribution in terms of dose-volume histogram (DVH) metrics were obtained and compared for each volume of interest (VOI). Mann-Whitney U-test and Pearson's correlation coefficient were used to assess the correlation between both methods. The effect of the tumoral liver volume on the absorbed dose metrics was also investigated. Strong correlation was found between simulation and therapy mean absorbed doses for all VOIs, although simulation tended to overestimate tumour absorbed doses by 26%. DVH metrics showed good correlation too, but significant differences were found for several metrics, mostly on non-tumoral liver. It was observed that the tumoral liver volume does not significantly affect the differences between simulation and therapy absorbed dose metrics. CONCLUSION: This study supports the strong correlation between absorbed dose metrics from simulation and therapy dosimetry based on 90Y SPECT/CT, highlighting the predictive ability of 99mTc-MAA, not only in terms of mean absorbed dose but also of the dose distribution.

4.
Eur Radiol ; 33(12): 9411-9424, 2023 Dec.
Article En | MEDLINE | ID: mdl-37368113

OBJECTIVE: We propose a deep learning-guided approach to generate voxel-based absorbed dose maps from whole-body CT acquisitions. METHODS: The voxel-wise dose maps corresponding to each source position/angle were calculated using Monte Carlo (MC) simulations considering patient- and scanner-specific characteristics (SP_MC). The dose distribution in a uniform cylinder was computed through MC calculations (SP_uniform). The density map and SP_uniform dose maps were fed into a residual deep neural network (DNN) to predict SP_MC through an image regression task. The whole-body dose maps reconstructed by the DNN and MC were compared in the 11 test cases scanned with two tube voltages through transfer learning with/without tube current modulation (TCM). The voxel-wise and organ-wise dose evaluations, such as mean error (ME, mGy), mean absolute error (MAE, mGy), relative error (RE, %), and relative absolute error (RAE, %), were performed. RESULTS: The model performance for the 120 kVp and TCM test set in terms of ME, MAE, RE, and RAE voxel-wise parameters was - 0.0302 ± 0.0244 mGy, 0.0854 ± 0.0279 mGy, - 1.13 ± 1.41%, and 7.17 ± 0.44%, respectively. The organ-wise errors for 120 kVp and TCM scenario averaged over all segmented organs in terms of ME, MAE, RE, and RAE were - 0.144 ± 0.342 mGy, and 0.23 ± 0.28 mGy, - 1.11 ± 2.90%, 2.34 ± 2.03%, respectively. CONCLUSION: Our proposed deep learning model is able to generate voxel-level dose maps from a whole-body CT scan with reasonable accuracy suitable for organ-level absorbed dose estimation. CLINICAL RELEVANCE STATEMENT: We proposed a novel method for voxel dose map calculation using deep neural networks. This work is clinically relevant since accurate dose calculation for patients can be carried out within acceptable computational time compared to lengthy Monte Carlo calculations. KEY POINTS: • We proposed a deep neural network approach as an alternative to Monte Carlo dose calculation. • Our proposed deep learning model is able to generate voxel-level dose maps from a whole-body CT scan with reasonable accuracy, suitable for organ-level dose estimation. • By generating a dose distribution from a single source position, our model can generate accurate and personalized dose maps for a wide range of acquisition parameters.


Neural Networks, Computer , Whole Body Imaging , Humans , Phantoms, Imaging , Monte Carlo Method , Tomography, X-Ray Computed , Radiation Dosage
5.
Eur J Nucl Med Mol Imaging ; 50(10): 2984-2996, 2023 08.
Article En | MEDLINE | ID: mdl-37171633

PURPOSE: Metastatic neuroendocrine tumors (NETs) overexpressing type 2 somatostatin receptors are the target for peptide receptor radionuclide therapy (PRRT) through the theragnostic pair of 68Ga/177Lu-DOTATATE. The main purpose of this study was to develop machine learning models to predict therapeutic tumor dose using pre therapy 68Ga -PET and clinicopathological biomarkers. METHODS: We retrospectively analyzed 90 segmented metastatic NETs from 25 patients (M14/F11, age 63.7 ± 9.5, range 38-76) treated by 177Lu-DOTATATE at our institute. Patients underwent both pretherapy [68Ga]Ga-DOTA-TATE PET/CT and four timepoints SPECT/CT at ~ 4, 24, 96, and 168 h post-177Lu-DOTATATE infusion. Tumors were segmented by a radiologist on baseline CT or MRI and transferred to co-registered PET/CT and SPECT/CT, and normal organs were segmented by deep learning-based method on CT of the PET and SPECT. The SUV metrics and tumor-to-normal tissue SUV ratios (SUV_TNRs) were calculated from 68Ga -PET at the contour-level. Posttherapy dosimetry was performed based on the co-registration of SPECT/CTs to generate time-integrated-activity, followed by an in-house Monte Carlo-based absorbed dose estimation. The correlation between delivered 177Lu Tumor absorbed dose and PET-derived metrics along with baseline clinicopathological biomarkers (such as Creatinine, Chromogranin A and prior therapies) were evaluated. Multiple interpretable machine-learning algorithms were developed to predict tumor dose using these pretherapy information. Model performance on a nested tenfold cross-validation was evaluated in terms of coefficient of determination (R2), mean-absolute-error (MAE), and mean-relative-absolute-error (MRAE). RESULTS: SUVmean showed a significant correlation (q-value < 0.05) with absorbed dose (Spearman ρ = 0.64), followed by TLSUVmean (SUVmean of total-lesion-burden) and SUVpeak (ρ = 0.45 and 0.41, respectively). The predictive value of PET-SUVmean in estimation of posttherapy absorbed dose was stronger compared to PET-SUVpeak, and SUV_TNRs in terms of univariate analysis (R2 = 0.28 vs. R2 ≤ 0.12). An optimal trivariate random forest model composed of SUVmean, TLSUVmean, and total liver SUVmean (normal and tumoral liver) provided the best performance in tumor dose prediction with R2 = 0.64, MAE = 0.73 Gy/GBq, and MRAE = 0.2. CONCLUSION: Our preliminary results demonstrate the feasibility of using baseline PET images for prediction of absorbed dose prior to 177Lu-PRRT. Machine learning models combining multiple PET-based metrics performed better than using a single SUV value and using other investigated clinicopathological biomarkers. Developing such quantitative models forms the groundwork for the role of 68Ga -PET not only for the implementation of personalized treatment planning but also for patient stratification in the era of precision medicine.


Neuroendocrine Tumors , Organometallic Compounds , Humans , Middle Aged , Aged , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Octreotide/therapeutic use , Retrospective Studies , Organometallic Compounds/therapeutic use , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/drug therapy , Biomarkers
6.
Head Neck Tumor Chall (2022) ; 13626: 1-30, 2023.
Article En | MEDLINE | ID: mdl-37195050

This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.

7.
Z Med Phys ; 33(4): 591-600, 2023 Nov.
Article En | MEDLINE | ID: mdl-36424313

OBJECTIVE: To develop and validate a versatile Monte Carlo (MC)-based dose calculation engine to support MC-based dose verification of treatment planning systems (TPSs) and quality assurance (QA) workflows in proton therapy. METHODS: The GATE MC toolkit was used to simulate a fixed horizontal active scan-based proton beam delivery (SIEMENS IONTRIS). Within the nozzle, two primary and secondary dose monitors have been designed to enable the comparison of the accuracy of dose estimation from MC simulations with respect to physical QA measurements. The developed beam model was validated against a series of commissioning measurements using pinpoint chambers and 2D array ionization chambers (IC) in terms of lateral profiles and depth dose distributions. Furthermore, beam delivery module and treatment planning has been validated against the literature deploying various clinical test cases of the AAPM TG-119 (c-shape phantom) and a prostate patient. RESULTS: MC simulations showed excellent agreement with measurements in the lateral depth-dose parameters and spread-out Bragg peak (SOBP) characteristics within a maximum relative error of 0.95 mm in range, 1.83% in entrance to peak ratio, 0.27% in mean point-to-point dose difference, and 0.32% in peak location. The mean relative absolute difference between MC simulations and measurements in terms of absorbed dose in the SOBP region was 0.93% ±â€¯0.88%. Clinical phantom studies showed a good agreement compared to research TPS (relative error for TG-119 planning target volume PTV-D95 ∼ 1.8%; and for prostate PTV-D95 ∼ -0.6%). CONCLUSION: We successfully developed a MC model for the pencil beam scanning system, which appears reliable for dose verification of the TPS in combination with QA information, prior to patient treatment.


Proton Therapy , Protons , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Phantoms, Imaging , Monte Carlo Method
8.
Eur J Radiol ; 157: 110602, 2022 Dec.
Article En | MEDLINE | ID: mdl-36410091

PURPOSE: Extracting water equivalent diameter (DW), as a good descriptor of patient size, from the CT localizer before the spiral scan not only minimizes truncation errors due to the limited scan field-of-view but also enables prior size-specific dose estimation as well as scan protocol optimization. This study proposed a unified methodology to measure patient size, shape, and attenuation parameters from a 2D anterior-posterior localizer image using deep learning algorithms without the need for labor-intensive vendor-specific calibration procedures. METHODS: 3D CT chest images and 2D localizers were collected for 4005 patients. A modified U-NET architecture was trained to predict the 3D CT images from their corresponding localizer scans. The algorithm was tested on 648 and 138 external cases with fixed and variable table height positions. To evaluate the performance of the prediction model, structural similarity index measure (SSIM), body area, body contour, Dice index, and water equivalent diameter (DW) were calculated and compared between the predicted 3D CT images and the ground truth (GT) images in a slicewise manner. RESULTS: The average age of the patients included in this study (1827 male and 1554 female) was 53.8 ± 17.9 (18-120) years. The DW, tube current ,and CTDIvol measured on original axial images in the external 138 cases group were significantly larger than those of the external 648 cases (P < 0.05). The SSIM and Dice index calculated between the prediction and GT for body contour were 0.998 ± 0.001 and 0.950 ± 0.016, respectively. The average percentage error in the calculation of DW was 2.7 ± 3.5 %. The error in the DW calculation was more considerable in larger patients (p-value < 0.05). CONCLUSIONS: We developed a model to predict the patient size, shape, and attenuation factors slice-by-slice prior to spiral scanning. The model exhibited remarkable robustness to table height variations. The estimated parameters are helpful for patient dose reduction and protocol optimization.


Deep Learning , Humans , Female , Male , Adult , Middle Aged , Aged , Thorax , Tomography, X-Ray Computed , Algorithms , Calibration
9.
Sci Rep ; 12(1): 14817, 2022 09 01.
Article En | MEDLINE | ID: mdl-36050434

We aimed to construct a prediction model based on computed tomography (CT) radiomics features to classify COVID-19 patients into severe-, moderate-, mild-, and non-pneumonic. A total of 1110 patients were studied from a publicly available dataset with 4-class severity scoring performed by a radiologist (based on CT images and clinical features). The entire lungs were segmented and followed by resizing, bin discretization and radiomic features extraction. We utilized two feature selection algorithms, namely bagging random forest (BRF) and multivariate adaptive regression splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass classification models. The dataset was divided into 50% (555 samples), 20% (223 samples), and 30% (332 samples) for training, validation, and untouched test datasets, respectively. Subsequently, nested cross-validation was performed on train/validation to select the features and tune the models. All predictive power indices were reported based on the testing set. The performance of multi-class models was assessed using precision, recall, F1-score, and accuracy based on the 4 × 4 confusion matrices. In addition, the areas under the receiver operating characteristic curves (AUCs) for multi-class classifications were calculated and compared for both models. Using BRF, 23 radiomic features were selected, 11 from first-order, 9 from GLCM, 1 GLRLM, 1 from GLDM, and 1 from shape. Ten features were selected using the MARS algorithm, namely 3 from first-order, 1 from GLDM, 1 from GLRLM, 1 from GLSZM, 1 from shape, and 3 from GLCM features. The mean absolute deviation, skewness, and variance from first-order and flatness from shape, and cluster prominence from GLCM features and Gray Level Non Uniformity Normalize from GLRLM were selected by both BRF and MARS algorithms. All selected features by BRF or MARS were significantly associated with four-class outcomes as assessed within MLR (All p values < 0.05). BRF + MLR and MARS + MLR resulted in pseudo-R2 prediction performances of 0.305 and 0.253, respectively. Meanwhile, there was a significant difference between the feature selection models when using a likelihood ratio test (p value = 0.046). Based on confusion matrices for BRF + MLR and MARS + MLR algorithms, the precision was 0.856 and 0.728, the recall was 0.852 and 0.722, whereas the accuracy was 0.921 and 0.861, respectively. AUCs (95% CI) for multi-class classification were 0.846 (0.805-0.887) and 0.807 (0.752-0.861) for BRF + MLR and MARS + MLR algorithms, respectively. Our models based on the utilization of radiomic features, coupled with machine learning were able to accurately classify patients according to the severity of pneumonia, thus highlighting the potential of this emerging paradigm in the prognostication and management of COVID-19 patients.


COVID-19 , Algorithms , COVID-19/diagnostic imaging , Humans , Machine Learning , ROC Curve , Tomography, X-Ray Computed/methods
10.
Digit Health ; 8: 20552076221111941, 2022.
Article En | MEDLINE | ID: mdl-35847523

The prevalent availability of high-performance computing coupled with validated computerized simulation platforms as open-source packages have motivated progress in the development of realistic anthropomorphic computational models of the human anatomy. The main application of these advanced tools focused on imaging physics and computational internal/external radiation dosimetry research. This paper provides an updated review of state-of-the-art developments and recent advances in the design of sophisticated computational models of the human anatomy with a particular focus on their use in radiation dosimetry calculations. The consolidation of flexible and realistic computational models with biological data and accurate radiation transport modeling tools enables the capability to produce dosimetric data reflecting actual setup in clinical setting. These simulation methodologies and results are helpful resources for the medical physics and medical imaging communities and are expected to impact the fields of medical imaging and dosimetry calculations profoundly.

11.
Comput Biol Med ; 145: 105467, 2022 06.
Article En | MEDLINE | ID: mdl-35378436

BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.


COVID-19 , Lung Neoplasms , Algorithms , COVID-19/diagnostic imaging , Humans , Machine Learning , Prognosis , Retrospective Studies , Tomography, X-Ray Computed/methods
12.
Clin Nucl Med ; 47(7): 606-617, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35442222

PURPOSE: The generalizability and trustworthiness of deep learning (DL)-based algorithms depend on the size and heterogeneity of training datasets. However, because of patient privacy concerns and ethical and legal issues, sharing medical images between different centers is restricted. Our objective is to build a federated DL-based framework for PET image segmentation utilizing a multicentric dataset and to compare its performance with the centralized DL approach. METHODS: PET images from 405 head and neck cancer patients from 9 different centers formed the basis of this study. All tumors were segmented manually. PET images converted to SUV maps were resampled to isotropic voxels (3 × 3 × 3 mm3) and then normalized. PET image subvolumes (12 × 12 × 12 cm3) consisting of whole tumors and background were analyzed. Data from each center were divided into train/validation (80% of patients) and test sets (20% of patients). The modified R2U-Net was used as core DL model. A parallel federated DL model was developed and compared with the centralized approach where the data sets are pooled to one server. Segmentation metrics, including Dice similarity and Jaccard coefficients, percent relative errors (RE%) of SUVpeak, SUVmean, SUVmedian, SUVmax, metabolic tumor volume, and total lesion glycolysis were computed and compared with manual delineations. RESULTS: The performance of the centralized versus federated DL methods was nearly identical for segmentation metrics: Dice (0.84 ± 0.06 vs 0.84 ± 0.05) and Jaccard (0.73 ± 0.08 vs 0.73 ± 0.07). For quantitative PET parameters, we obtained comparable RE% for SUVmean (6.43% ± 4.72% vs 6.61% ± 5.42%), metabolic tumor volume (12.2% ± 16.2% vs 12.1% ± 15.89%), and total lesion glycolysis (6.93% ± 9.6% vs 7.07% ± 9.85%) and negligible RE% for SUVmax and SUVpeak. No significant differences in performance (P > 0.05) between the 2 frameworks (centralized vs federated) were observed. CONCLUSION: The developed federated DL model achieved comparable quantitative performance with respect to the centralized DL model. Federated DL models could provide robust and generalizable segmentation, while addressing patient privacy and legal and ethical issues in clinical data sharing.


Deep Learning , Head and Neck Neoplasms , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography
13.
Int J Imaging Syst Technol ; 32(1): 12-25, 2022 Jan.
Article En | MEDLINE | ID: mdl-34898850

We present a deep learning (DL)-based automated whole lung and COVID-19 pneumonia infectious lesions (COLI-Net) detection and segmentation from chest computed tomography (CT) images. This multicenter/multiscanner study involved 2368 (347'259 2D slices) and 190 (17 341 2D slices) volumetric CT exams along with their corresponding manual segmentation of lungs and lesions, respectively. All images were cropped, resized, and the intensity values clipped and normalized. A residual network with non-square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID-19 lesions segmentation was evaluated on an external reverse transcription-polymerase chain reaction positive COVID-19 dataset (7'333 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. The mean Dice coefficients were 0.98 ± 0.011 (95% CI, 0.98-0.99) and 0.91 ± 0.038 (95% CI, 0.90-0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03 ± 0.84% (95% CI, -0.12 to 0.18) and -0.18 ± 3.4% (95% CI, -0.8 to 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38 ± 1.2% (95% CI, 0.16-0.59) and 0.81 ± 6.6% (95% CI, -0.39 to 2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the range first-order feature (-6.95%) and least axis length shape feature (8.68%) for lesions. We developed an automated DL-guided three-dimensional whole lung and infected regions segmentation in COVID-19 patients to provide fast, consistent, robust, and human error immune framework for lung and pneumonia lesion detection and quantification.

14.
Insights Imaging ; 12(1): 162, 2021 Nov 06.
Article En | MEDLINE | ID: mdl-34743251

BACKGROUND: Despite the prevalence of chest CT in the clinic, concerns about unoptimized protocols delivering high radiation doses to patients still remain. This study aimed to assess the additional radiation dose associated with overscanning in chest CT and to develop an automated deep learning-assisted scan range selection technique to reduce radiation dose to patients. RESULTS: A significant overscanning range (31 ± 24) mm was observed in clinical setting for over 95% of the cases. The average Dice coefficient for lung segmentation was 0.96 and 0.97 for anterior-posterior (AP) and lateral projections, respectively. By considering the exact lung coverage as the ground truth, and AP and lateral projections as input, The DL-based approach resulted in errors of 0.08 ± 1.46 and - 1.5 ± 4.1 mm in superior and inferior directions, respectively. In contrast, the error on external scout views was - 0.7 ± 4.08 and 0.01 ± 14.97 mm for superior and inferior directions, respectively.The ED reduction achieved by automated scan range selection was 21% in the test group. The evaluation of a large multi-centric chest CT dataset revealed unnecessary ED of more than 2 mSv per scan and 67% increase in the thyroid absorbed dose. CONCLUSION: The proposed DL-based solution outperformed previous automatic methods with acceptable accuracy, even in complicated and challenging cases. The generizability of the model was demonstrated by fine-tuning the model on AP scout views and achieving acceptable results. The method can reduce the unoptimized dose to patients by exclunding unnecessary organs from field of view.

15.
Comput Biol Med ; 136: 104755, 2021 09.
Article En | MEDLINE | ID: mdl-34388458

BACKGROUND AND PURPOSE: Accurate calculation of the absorbed dose delivered to the tumor and normal tissues improves treatment gain factor, which is the major advantage of brachytherapy over external radiation therapy. To address the simplifications of TG-43 assumptions that ignore the dosimetric impact of medium heterogeneities, we proposed a deep learning (DL)-based approach, which improves the accuracy while requiring a reasonable computation time. MATERIALS AND METHODS: We developed a Monte Carlo (MC)-based personalized brachytherapy dosimetry simulator (PBrDoseSim), deployed to generate patient-specific dose distributions. A deep neural network (DNN) was trained to predict personalized dose distributions derived from MC simulations, serving as ground truth. The paired channel input used for the training is composed of dose distribution kernel in water medium along with the full-volumetric density maps obtained from CT images reflecting medium heterogeneity. RESULTS: The predicted single-dwell dose kernels were in good agreement with MC-based kernels serving as reference, achieving a mean relative absolute error (MRAE) and mean absolute error (MAE) of 1.16 ± 0.42% and 4.2 ± 2.7 × 10-4 (Gy.sec-1/voxel), respectively. The MRAE of the dose volume histograms (DVHs) between the DNN and MC calculations in the clinical target volume were 1.8 ± 0.86%, 0.56 ± 0.56%, and 1.48 ± 0.72% for D90, V150, and V100, respectively. For bladder, sigmoid, and rectum, the MRAE of D5cc between the DNN and MC calculations were 2.7 ± 1.7%, 1.9 ± 1.3%, and 2.1 ± 1.7%, respectively. CONCLUSION: The proposed DNN-based personalized brachytherapy dosimetry approach exhibited comparable performance to the MC method while overcoming the computational burden of MC calculations and oversimplifications of TG-43.


Brachytherapy , Deep Learning , Humans , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
16.
Phys Med ; 83: 122-137, 2021 Mar.
Article En | MEDLINE | ID: mdl-33765602

This review sets out to discuss the foremost applications of artificial intelligence (AI), particularly deep learning (DL) algorithms, in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. To this end, the underlying limitations/challenges of these imaging modalities are briefly discussed followed by a description of AI-based solutions proposed to address these challenges. This review will focus on mainstream generic fields, including instrumentation, image acquisition/formation, image reconstruction and low-dose/fast scanning, quantitative imaging, image interpretation (computer-aided detection/diagnosis/prognosis), as well as internal radiation dosimetry. A brief description of deep learning algorithms and the fundamental architectures used for these applications is also provided. Finally, the challenges, opportunities, and barriers to full-scale validation and adoption of AI-based solutions for improvement of image quality and quantitative accuracy of PET and SPECT images in the clinic are discussed.


Artificial Intelligence , Deep Learning , Image Processing, Computer-Assisted , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
17.
Eur J Nucl Med Mol Imaging ; 48(3): 670-682, 2021 03.
Article En | MEDLINE | ID: mdl-32875430

PURPOSE: In the era of precision medicine, patient-specific dose calculation using Monte Carlo (MC) simulations is deemed the gold standard technique for risk-benefit analysis of radiation hazards and correlation with patient outcome. Hence, we propose a novel method to perform whole-body personalized organ-level dosimetry taking into account the heterogeneity of activity distribution, non-uniformity of surrounding medium, and patient-specific anatomy using deep learning algorithms. METHODS: We extended the voxel-scale MIRD approach from single S-value kernel to specific S-value kernels corresponding to patient-specific anatomy to construct 3D dose maps using hybrid emission/transmission image sets. In this context, we employed a Deep Neural Network (DNN) to predict the distribution of deposited energy, representing specific S-values, from a single source in the center of a 3D kernel composed of human body geometry. The training dataset consists of density maps obtained from CT images and the reference voxelwise S-values generated using Monte Carlo simulations. Accordingly, specific S-value kernels are inferred from the trained model and whole-body dose maps constructed in a manner analogous to the voxel-based MIRD formalism, i.e., convolving specific voxel S-values with the activity map. The dose map predicted using the DNN was compared with the reference generated using MC simulations and two MIRD-based methods, including Single and Multiple S-Values (SSV and MSV) and Olinda/EXM software package. RESULTS: The predicted specific voxel S-value kernels exhibited good agreement with the MC-based kernels serving as reference with a mean relative absolute error (MRAE) of 4.5 ± 1.8 (%). Bland and Altman analysis showed the lowest dose bias (2.6%) and smallest variance (CI: - 6.6, + 1.3) for DNN. The MRAE of estimated absorbed dose between DNN, MSV, and SSV with respect to the MC simulation reference were 2.6%, 3%, and 49%, respectively. In organ-level dosimetry, the MRAE between the proposed method and MSV, SSV, and Olinda/EXM were 5.1%, 21.8%, and 23.5%, respectively. CONCLUSION: The proposed DNN-based WB internal dosimetry exhibited comparable performance to the direct Monte Carlo approach while overcoming the limitations of conventional dosimetry techniques in nuclear medicine.


Deep Learning , Human Body , Computer Simulation , Humans , Monte Carlo Method , Phantoms, Imaging , Radiometry
18.
Eur Radiol ; 31(3): 1420-1431, 2021 Mar.
Article En | MEDLINE | ID: mdl-32879987

OBJECTIVES: The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients. METHODS: In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training, test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting subjective assessment of image quality and related COVID-19 features, including ground glass opacities (GGO), crazy paving (CP), consolidation (CS), nodular infiltrates (NI), bronchovascular thickening (BVT), and pleural effusion (PE). RESULTS: The radiation dose in terms of CT dose index (CTDIvol) was reduced by up to 89%. The RMSE decreased from 0.16 ± 0.05 to 0.09 ± 0.02 and from 0.16 ± 0.06 to 0.08 ± 0.02 for the predicted compared with ultra-low-dose CT images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an acceptance rate of 4.72 ± 0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated 2.78 ± 0.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42 ± 0.8. CONCLUSIONS: The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial radiation dose reduction. KEY POINTS: • Ultra-low-dose CT imaging of COVID-19 patients would result in the loss of critical information about lesion types, which could potentially affect clinical diagnosis. • Deep learning-based prediction of full-dose from ultra-low-dose CT images for the diagnosis of COVID-19 could reduce the radiation dose by up to 89%. • Deep learning algorithms failed to recover the correct lesion structure/density for a number of patients considered outliers, and as such, further research and development is warranted to address these limitations.


COVID-19/diagnostic imaging , Deep Learning , Tomography, X-Ray Computed/methods , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Radiation Dosage , Reproducibility of Results , SARS-CoV-2 , Signal-To-Noise Ratio
19.
Phys Med Biol ; 65(4): 045008, 2020 02 12.
Article En | MEDLINE | ID: mdl-31935713

The clinical value of x-ray computed tomography (CT) has skyrocketed in the last decade while at the same time being the main source of medical exposure to the population. Concerns regarding the potential health hazards associated with the use of ionizing radiation were raised and an appropriate estimation of absorbed dose to patients is highly desired. In this work, we aim to validate our developed Monte Carlo CT simulator using in-phantom dose measurements and further assess the impact of personalized scan-related parameters on dosimetric calculations. We developed a Monte Carlo-based CT simulator for personalized organ level dose calculations, in which the CT source model, patient-specific computational model and personalized scanning protocol were integrated. The CT simulator was benchmarked using an ionization chamber and standard CT Dose Index phantom while the dosimetry methodology was validated through experimental measurements using thermoluminescent dosimeters (TLDs) embedded within an anthropomorphic phantom. Patient-specific scan protocols extracted from CT raw data and DICOM image metadata, respectively, were fed as input into the CT simulator to calculate individualized dose profiles. Thereby, the dosimetric uncertainties associated with using different protocol-related parameters were investigated. The absolute absorbed dose difference between measurements and simulations using the ionization chamber was less than 3%. In the case of the anthropomorphic phantom, the absolute absorbed dose difference between simulations and TLD measurements ranged from -8.3% to 22%, with a mean absolute difference of 14% while the uncertainties of protocol-related input parameters introduced an extra absolute error of 15% to the simulated results compared with TLD measurements. The developed methodology can be employed for accurate estimation of organ level dose from clinical CT examinations. The validated methodology can be further developed to produce an accurate MC simulation model with a reduced computational burden.


Monte Carlo Method , Precision Medicine , Radiometry/methods , Tomography, X-Ray Computed , Uncertainty , Humans , Phantoms, Imaging , Radiation Dosage
20.
Med Phys ; 46(5): 2403-2411, 2019 May.
Article En | MEDLINE | ID: mdl-30854654

PURPOSE: Diagnostic imaging procedures require optimization depending on the medical task at hand, the apparatus being used, and patient physical and anatomical characteristics. The assessment of the radiation dose and associated risks plays a key role in safety and quality management for radiation protection purposes. In this work, we aim at developing a methodology for personalized organ-level dose assessment in x-ray computed tomography (CT) imaging. METHODS: Regional voxel models representing reference patient-specific computational phantoms were generated through image segmentation of CT images for four patients. The best-fitting anthropomorphic phantoms were selected from a previously developed comprehensive phantom library according to patient's anthropometric parameters, then registered to the anatomical masks (skeleton, lung, and body contour) of patients to produce a patient-specific whole-body phantom. Well-established image registration metrics including Jaccard's coefficients for each organ, organ mass, body perimeter, organ-surface distance, and effective diameter are compared between the reference patient model, registered model, and anchor phantoms. A previously validated Monte Carlo code is utilized to calculate the absorbed dose in target organs along with the effective dose delivered to patients. The calculated absorbed doses from the reference patient models are then compared with the produced personalized model, anchor phantom, and those reported by commercial dose monitoring systems. RESULTS: The evaluated organ-surface distance and body effective diameter metrics show a mean absolute difference between patient regional voxel models, serving as reference, and patient-specific models around 4.4% and 4.5%, respectively. Organ-level radiation doses of patient-specific models are in good agreement with those of the corresponding patient regional voxel models with a mean absolute difference of 9.1%. The mean absolute difference of organ doses for the best-fitting model extracted from the phantom library and Radimetrics™ commercial dose tracking software are 15.5% and 41.1%, respectively. CONCLUSION: The results suggest that the proposed methodology improves the accuracy of organ-level dose estimation in CT, especially for extreme cases [high body mass index (BMI) and large skeleton]. Patient-specific radiation dose calculation and risk assessment can be performed using the proposed methodology for both monitoring of cumulative radiation exposure of patients and epidemiological studies. Further validation using a larger database is warranted.


Patient-Specific Modeling , Radiation Dosage , Tomography, X-Ray Computed , Humans , Monte Carlo Method , Phantoms, Imaging
...