Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Mol Biotechnol ; 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37839042

The economic exploration of renewable energy resources has hot fundamentals among the countries besides dwindling energy resources and increasing public pressure. Cellulose accumulation is a major bio-natural resource from agricultural waste. Cellulases are the most potential enzymes that systematically degrade cellulosic biomass into monomers which could be further processed into several efficient value-added products via chemical and biological reactions including useful biomaterial for human benefits. This could lower the environmental risks problems followed by an energy crisis. Cellulases are mainly synthesized by special fungal genotypes. The strain Trichoderma orientalis could highly express cellulases and was regarded as an ideal strain for further research, as the genetic tools have found compatibility for cellulose breakdown by producing effective cellulose-degrading enzymes. This strain has found a cellulase production of about 35 g/L that needs further studies for advancement. The enzyme activity of strain Trichoderma orientalis needed to be further improved from a molecular level which is one of the important methods. Considering synthetic biological approaches to unveil the genetic tools will boost the knowledge about commercial cellulases bioproduction. Several genetic transformation methods were significantly cited in this study. The transformation approaches that are currently researchers are exploring is transcription regulatory factors that are deeply explained in this study, that are considered essential regulators of gene expression.

2.
Chemosphere ; 305: 135291, 2022 Oct.
Article En | MEDLINE | ID: mdl-35760128

Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.


Environmental Pollutants , Environmental Restoration and Remediation , Water Pollutants, Chemical , Cellulose/chemistry , Humans , Prospective Studies , Wastewater , Water Pollutants, Chemical/chemistry
3.
J Mol Graph Model ; 114: 108204, 2022 07.
Article En | MEDLINE | ID: mdl-35525190

The nonlinear optical (NLO) properties of gold (Au) doped graphyne (GY) complexes are the subject of this quantum mechanical investigation. Detailed profiling of GY@Aucenter, GY@Auside, GY@2Auabove,GY@2Auperpendicular, and GY@3Aucenter is accomplished at CAM-B3LYP/LANL2DZ. The differential influence of various GY based complexes on molecular geometry, vertical ionization energy (VIE), interaction energy (Eint), frontier molecular orbitals (FMOs), density of states (DOS), absorption maximum (λmax), molecular electrostatic potential (MEP), electron density distribution map (EDDM), transition density matrix (TDM), dipole moment (µ) and non-linear optical (NLO) properties have been investigated. Non-covalent interaction (NCI) analysis has been done to explore the sort of interactions in designed complexes. The vibrational frequencies are probed via infrared (IR) analysis. Doping tactics in all complexes dramatically changed charge carrier properties, such as shrinking band gap (Eg) and increasing λmax in the range of 3.97-5.58 eV and 288-562 nm respectively, compared to pure GY with 5.78 eV Eg and 265 nm λmax. When compared to GY (αO = 281.54 andßO = 0.21 au), GY@3Aucenter exhibited a significant increase in static mean polarizability (αO = 415 au) and the mean first hyperpolarizability (ßo = 3652 au) attributable to its lowest excitation energy (ΔE). GY doping has been discovered to be advantageous for designing potential nanoscale devices by focusing on the symphony between small Au clusters and GY and their impacts on NLO aspects.


Gold , Vibration , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Static Electricity
4.
J Mol Model ; 28(6): 161, 2022 May 21.
Article En | MEDLINE | ID: mdl-35597854

Graphyne (GYN) has received immense attention in gas adsorption applications due to its large surface area. The adsorption of toxic ammonia and nitrogen halides gaseous molecules on graphyne has been theoretically studied at ωB97XD/6-31 + G(d, p) level of DFT. The counterpoise corrected interaction energies of NH3, NF3, NCl3, and NBr3 molecules with GYN are - 4.73, - 2.27, - 5.22, and - 7.19 kcal mol-1, respectively. Symmetry-adapted perturbation theory (SAPT0) and noncovalent interaction index (NCI) reveal that the noncovalent interaction between analytes and GYN is dominated by dispersion forces. The significant change in electronic behavior, i.e., energies of HOMO and LUMO orbitals and NBO charge transfer correspond to the pronounced sensitivity of GYN towards considered analytes, especially NBr3. Finally, TD-DFT calculation reveals a decrease in electronic transition energies and shifting of adsorption to a longer wavelength. The recovery time for NX3@GYN is observed in nanoseconds, which is many orders of magnitude smaller than the reported systems. The recovery time is further decreased with increasing temperature, indicating that the GYN benefits from a short recovery time as a chemical sensor.

5.
J Mol Model ; 27(9): 244, 2021 Aug 10.
Article En | MEDLINE | ID: mdl-34373938

Though the gas sensing applications of graphdiyne have widely reported; however, the biosensing utility of graphdiyne needs to be explored. This study deals with the sensitivity of graphdiyne nanoflake (GDY) towards the uric acid (UA) within the density functional framework. The uric acid is allowed to interact with graphdiyne nanoflake from all the possible orientations. Based on these interacting geometries, the complexes are differentiated with naming, i.e., UA1@GDY, UA2@GDY, UA3@GDY, and UA4@GDY (Fig. 1). The essence of interface interactions of UA on GDY is derived by computing geometric, energetic, electronic, and optical properties. The adsorbing affinity of complexes is evaluated at ωB97XD/6-31 + G(d, p) level of theory. The stabilities of the complexes are quantified through the interaction energies (Eint) with reasonable accuracy. The calculated Eint of the UA1@GDY, UA2@GDY, UA3@GDY, and UA4@GDY complexes are - 31.13, - 25.87, - 20.59, and - 16.54 kcal/mol, respectively. In comparison with geometries, it is revealed that the higher stability of complexes is facilitated by π-π stacking. Other energetic analyses including symmetry adopted perturbation theory (SAPT), noncovalent interaction index (NCI), and quantum theory of atoms in molecule (QTAIM) provide the evidence of dominating dispersion energy in stabilizing the resultant complexes. The HOMO-LUMO energies, NBO charge transfer, and UV-vis analysis justify the higher electronic transition in UA1@GDY, plays a role of higher sensitivity of GDY towards the π-stacked geometries over all other possible interaction orientations. The present findings bestow the higher sensitivity of GDY towards uric acid via π-stacking interactions. Fig. 1 Optimized geometries (with interaction distances in Å) of UA@GDY complexes.

6.
Heliyon ; 7(6): e07338, 2021 Jun.
Article En | MEDLINE | ID: mdl-34195439

The columbic efficiency, removal efficiency and voltage production of seven different combinations of carbon (acetic acid, albumin and sucrose) with nutrients (C:N, C:P, C:S, C:N:S, C:P:S, C:N:P and C: N:S:P) were investigated at three different ratios (20:1, 15:1 and 10:1). The effects of various pH values were also explored for these combinations of carbon, and sulfur compounds (pH 6-8). The highest columbic efficiency (75.8%), COD removal efficiency (86%) and voltage (667 mV) were recorded when the acetic acid was used in the MFC and the lowest columbic efficiency (12.8%), removal efficiency (37.6%) and voltage (145 mV) were observed in case of albumin. A marked increase in columbic efficiency, removal efficiency and voltage production were seen with the rise in the pH value from 6 to 8. The lowest columbic efficiency, removal efficiency and voltage production were seen at pH 6 and highest at pH 8. At each investigated pH, the highest removal efficiency, columbic efficiency, and voltage were found at substrate ratio of 20:1 while lower at 10:1. At all pH values, the carbon to nutrient ratios seemed to have followed a similar trend i.e., the COD removal efficiency, columbic efficiency and voltage generation was found in the order C:N > C:N:S > C:N:S:P > C:N:P > C:S > C:P:S > C:P. In all cases, nitrogen showed a higher removal as compared to phosphorous and sulfur.

...