Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bionic Eng ; 20(3): 1263-1295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36530517

RESUMEN

This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.

2.
PLoS One ; 17(11): e0275346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322574

RESUMEN

This paper proposes an improvement to the dwarf mongoose optimization (DMO) algorithm called the advanced dwarf mongoose optimization (ADMO) algorithm. The improvement goal is to solve the low convergence rate limitation of the DMO. This situation arises when the initial solutions are close to the optimal global solution; the subsequent value of the alpha must be small for the DMO to converge towards a better solution. The proposed improvement incorporates other social behavior of the dwarf mongoose, namely, the predation and mound protection and the reproductive and group splitting behavior to enhance the exploration and exploitation ability of the DMO. The ADMO also modifies the lifestyle of the alpha and subordinate group and the foraging and seminomadic behavior of the DMO. The proposed ADMO was used to solve the congress on evolutionary computation (CEC) 2011 and 2017 benchmark functions, consisting of 30 classical and hybrid composite problems and 22 real-world optimization problems. The performance of the ADMO, using different performance metrics and statistical analysis, is compared with the DMO and seven other existing algorithms. In most cases, the results show that solutions achieved by the ADMO are better than the solution obtained by the existing algorithms.


Asunto(s)
Benchmarking , Herpestidae , Animales , Algoritmos , Evolución Biológica , Conducta Social
3.
PLoS One ; 17(10): e0274850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201524

RESUMEN

Selecting appropriate feature subsets is a vital task in machine learning. Its main goal is to remove noisy, irrelevant, and redundant feature subsets that could negatively impact the learning model's accuracy and improve classification performance without information loss. Therefore, more advanced optimization methods have been employed to locate the optimal subset of features. This paper presents a binary version of the dwarf mongoose optimization called the BDMO algorithm to solve the high-dimensional feature selection problem. The effectiveness of this approach was validated using 18 high-dimensional datasets from the Arizona State University feature selection repository and compared the efficacy of the BDMO with other well-known feature selection techniques in the literature. The results show that the BDMO outperforms other methods producing the least average fitness value in 14 out of 18 datasets which means that it achieved 77.77% on the overall best fitness values. The result also shows BDMO demonstrating stability by returning the least standard deviation (SD) value in 13 of 18 datasets (72.22%). Furthermore, the study achieved higher validation accuracy in 15 of the 18 datasets (83.33%) over other methods. The proposed approach also yielded the highest validation accuracy attainable in the COIL20 and Leukemia datasets which vividly portray the superiority of the BDMO.


Asunto(s)
Herpestidae , Algoritmos , Animales , Arizona , Humanos , Aprendizaje Automático
4.
Sci Rep ; 12(1): 14945, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056062

RESUMEN

The dwarf mongoose optimization (DMO) algorithm developed in 2022 was applied to solve continuous mechanical engineering design problems with a considerable balance of the exploration and exploitation phases as a metaheuristic approach. Still, the DMO is restricted in its exploitation phase, somewhat hindering the algorithm's optimal performance. In this paper, we proposed a new hybrid method called the BDMSAO, which combines the binary variants of the DMO (or BDMO) and simulated annealing (SA) algorithm. In the modelling and implementation of the hybrid BDMSAO algorithm, the BDMO is employed and used as the global search method and the simulated annealing (SA) as the local search component to enhance the limited exploitative mechanism of the BDMO. The new hybrid algorithm was evaluated using eighteen (18) UCI machine learning datasets of low and medium dimensions. The BDMSAO was also tested using three high-dimensional medical datasets to assess its robustness. The results showed the efficacy of the BDMSAO in solving challenging feature selection problems on varying datasets dimensions and its outperformance over ten other methods in the study. Specifically, the BDMSAO achieved an overall result of 61.11% in producing the highest classification accuracy possible and getting 100% accuracy on 9 of 18 datasets. It also yielded the maximum accuracy obtainable on the three high-dimensional datasets utilized while achieving competitive performance regarding the number of features selected.


Asunto(s)
Herpestidae , Algoritmos , Animales , Aprendizaje Automático , Solución de Problemas
5.
Neural Comput Appl ; 34(22): 19751-19790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060097

RESUMEN

Selecting relevant feature subsets is vital in machine learning, and multiclass feature selection is harder to perform since most classifications are binary. The feature selection problem aims at reducing the feature set dimension while maintaining the performance model accuracy. Datasets can be classified using various methods. Nevertheless, metaheuristic algorithms attract substantial attention to solving different problems in optimization. For this reason, this paper presents a systematic survey of literature for solving multiclass feature selection problems utilizing metaheuristic algorithms that can assist classifiers selects optima or near optima features faster and more accurately. Metaheuristic algorithms have also been presented in four primary behavior-based categories, i.e., evolutionary-based, swarm-intelligence-based, physics-based, and human-based, even though some literature works presented more categorization. Further, lists of metaheuristic algorithms were introduced in the categories mentioned. In finding the solution to issues related to multiclass feature selection, only articles on metaheuristic algorithms used for multiclass feature selection problems from the year 2000 to 2022 were reviewed about their different categories and detailed descriptions. We considered some application areas for some of the metaheuristic algorithms applied for multiclass feature selection with their variations. Popular multiclass classifiers for feature selection were also examined. Moreover, we also presented the challenges of metaheuristic algorithms for feature selection, and we identified gaps for further research studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA