Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038874

RESUMEN

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

2.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968884

RESUMEN

Plamepsin II has been identified as a therapeutic target in the Plasmodium falciparum's life cycle and may lead to a drastic reduction in deaths caused by malaria worldwide. Africa flora is rich in medicinal qualities and possesses both simple and complex bioactive phytochemicals. This study utilized computational approaches like molecular docking, molecular dynamics simulation, quantum chemical calculations and ADMET to evaluate the plasmepsin II inhibitory properties of phytochemicals isolated from African antimalarial plants. Molecular docking was carried out to estimate the binding affinity of 229 phytochemicals whereby ekeberin A, dichamanetin, 10-hydroxyusambaresine, chamuvaritin and diuvaretin were selected. Further, RMSD and RMSF plots from the 100 ns simulation results showed that the screened phytochemicals were stable in the enzyme's binding pocket. The quantum chemical calculation revealed that all the phytochemicals are strong electrophiles, while ekeberin A was identified as the most stable and dichamanetin as the most reactive. Also, ADMET studies established the drug candidacy of the phytochemicals. Thus, these phytochemicals could act as good antimalarial agents after extensive in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...