Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Fish Biol ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38807342

Oxynoemacheilus fatmae, a new species, is found in the Güzelhisar Stream in the northern Aegean Sea basin. It is differentiated from all other species of Oxynoemacheilus in the northern Aegean Sea and adjacent basins by having four to eight irregularly shaped narrow black bars on the posterior part of flank, and anterior parts of the flank with a marbled pattern. O. fatmae is differentiated from the closest species Oxynoemacheilus theophilii by having 14 fixed diagnostic nucleotide substitution sites, and the pair-wise genetic distance is 2.22%. It further differs from O. theophilii by having a slenderer body (body at dorsal-fin origin: 15%-17% standard length [SL] vs. 17%-18%), a slenderer caudal peduncle (10%-12% SL vs. 12%-13%), a more forked caudal fin (length of middle caudal-fin lope: 16%-19% SL vs. 19%-23%), and the absence the dorsal and ventral adipose crests on the caudal peduncle behind the vertical of the posterior anal-fin base (vs. present). Three species delimitation tests (assemble species by automatic partitioning (ASAP), automatic barcode gap discovery (ABGD) and generalized mixed yule-coalescent (GMYC)) and phylogenetic analyses reinforce the validity of O. fatmae as a distinct species.

2.
Glob Chang Biol ; 30(5): e17312, 2024 May.
Article En | MEDLINE | ID: mdl-38736133

Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.


Introduced Species , Invertebrates , Population Dynamics , Animals , Invertebrates/physiology , Europe , Ecosystem , Fresh Water
3.
Sci Total Environ ; 938: 173520, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38810734

Habitat alterations and the introduction of non-native species have many ecological impacts, including the loss of biodiversity and a deterioration of ecosystem functioning. The effects of these combined stressors on the community trophic web and functional niche are, however, not completely clear. Here, we investigated how artificial ecosystems (i.e. reservoirs) and non-native species may influence the trophic and functional niche space of freshwater fish communities. To do so, we used carbon and nitrogen stable isotope and abundance data to compute a set of isotopic, trait, and functional metrics for 13 fish communities sampled from 12 distinct ecosystems in Türkiye. We show that in reservoirs, fish were more similar in their trophic niche compared to lakes, where the trophic niche was more variable, due to higher habitat complexity. However, there were no differences in the trait and functional metrics between the two ecosystem types, suggesting a higher prey diversity than assumed in reservoirs. We also found that the number of non-native species did not affect the trophic niche space, nor the trait or functional space occupied by the fish community. This indicates that non-native species tended to overlap their trophic niche with native species, while occupying empty functional niches in the recipient community functional space. Similarly, the proportion of non-native species did not affect any trophic, trait, or functional metric, suggesting that changes in community composition were not reflected in changes in the community niche space. Moreover, we found that trait richness, but not functional richness, was positively related to the isotopic niche width and diversity, indicating that a wider occupied trait niche space corresponded with a wider occupied trophic niche and lesser interspecific similarity. Our findings underscore the complexity of ecological relationships within freshwater ecosystems and highlight the need for comprehensive management strategies to mitigate the impacts of human activities and biological invasions.


Biodiversity , Ecosystem , Fishes , Food Chain , Fresh Water , Introduced Species , Animals , Fishes/physiology , Environmental Monitoring , Lakes
4.
J Environ Manage ; 358: 120779, 2024 May.
Article En | MEDLINE | ID: mdl-38599083

Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.


Introduced Species , Ecosystem , Conservation of Natural Resources/economics , Agriculture/economics , Animals , Fisheries/economics
5.
Sci Total Environ ; 925: 171718, 2024 May 15.
Article En | MEDLINE | ID: mdl-38490407

Non-native species can lead to severe impacts on invaded ecosystems, including the decline of ecosystem function through deleterious impacts on species diversity. The successful establishment of non-native species in new environments is the first barrier a species must overcome, ultimately depending on its ability to either cope with or adapt to local site-specific conditions. Despite the widespread distribution and ecological consequences of many freshwater invaders, site-specific and climatic preferences are often unknown. This is also the case of the Eastern mosquitofish Gambusia holbrooki, a global invader considered as a pervasive threat to endemic species. Here, we determined the ecological features and preferred site-specific conditions of G. holbrooki in Türkiye, which spans a wide range of diverse biogeographically distinct ecosystems by surveying populations from 130 localities in 2016 and 2017. Gambusia holbrooki were detected by hand-net in 48 of these sites (19 lotic, 29 lentic). It showed a preference for shallow waters with medium sized rocks, and abundances differed spatially across a latitudinal gradient and was influenced predominantly by variations in pH. The only other factors predicting its presence were low current velocities and gravel substrate, highlighting its ecological versatility in utilising a wide range of microhabitats. Bioclimatic models suggest that G. holbrooki is found in areas with a wide average annual temperature ranging from 10 to 20 °C, but with temperature not being a limiting factor to its invasion. Gambusia holbrooki shows a preference for xeric freshwater ecosystems and endorheic basins, as well as temperate coastal rivers, temperate upland rivers, temperate floodplain rivers and wetlands, and tropical and subtropical coastal rivers. These results, particularly the wide occurrence with only few limiting factors, emphasise the invasion potential of mosquitofish and should substantiate the need for localised invasive species management and conservation efforts, particularly in smaller or insular areas where mosquitofish and endemic fish species co-exist.


Cyprinodontiformes , Ecosystem , Animals , Introduced Species , Rivers , Fresh Water
6.
Sci Rep ; 13(1): 17635, 2023 10 17.
Article En | MEDLINE | ID: mdl-37848487

Biological invasions, particularly of fish species, significantly threaten aquatic ecosystems. Among these invaders, the introduction of the European perch (Perca fluviatilis) can have particularly detrimental effects on native communities, affecting both ecosystem functioning and human well-being. In this study, carbon and nitrogen stable isotope analysis was employed, using perch originating from five different ecosystems, to model the effects of their hypothetical introduction into Iznik Lake, an economically and ecologically important, biodiversity-rich lake in northern Turkey, to ultimately assess their potential predation impact and competition with native predators. The results revealed that if perch were introduced to the community, they would - considering gape size limitations - primarily prey upon Vimba vimba and Rutilus rutilus, indicating a significant feeding pressure on these species. Furthermore, the study identified a potential overlap and competition for resources between commonly mesopredator perch and the European catfish Silurus glanis, the current top predator in the ecosystem. Both species would occupy top predatory positions, emphasizing the potential disruption of predator-prey dynamics. Our findings underscore the potential ecological repercussions of perch invasions. The selective predation on V. vimba and R. rutilus, with the latter being consumed to a lesser extent by perch, could lead to cascading effects throughout the food web, altering the community structure, and ecosystem dynamics. Additionally, the competition between perch and S. glanis raises concerns about effects on the stability and functioning of the fish community. These results highlight the need for proactive management strategies to mitigate the risk of perch introductions. Strict regulations on the movement and introduction of invasive species, along with comprehensive monitoring, are crucial for preserving native communities and maintaining the ecological integrity of freshwater ecosystems. Our study demonstrates the potential predation impact of perch on vulnerable fish species and the competition with the established apex predator, emphasizing the importance of considering the ecological consequences of perch invasions and informing management decisions to ensure the conservation and sustainability of aquatic ecosystems.


Catfishes , Cyprinidae , Perches , Animals , Humans , Lakes , Ecosystem , Introduced Species , Nitrogen Isotopes , Predatory Behavior
7.
Bull Environ Contam Toxicol ; 111(3): 38, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37704772

In this study, heavy metal accumulation levels (Cu, Zn, Cr, Pb, As) in biotic [Carassius gibelio (Bloch, 1782), Squalius pursakensis (Hankó 1925)] and abiotic (sediments) components in a significant freshwater ecosystem in Türkiye were investigated on the basis of seasonal variations using geographic information systems (GIS) and some ecotoxicological risk assessment indices [PLI (pollution load index), PERI (potential ecological risk index), Igeo (geo accumulation index), CF (contamination factor) and BRI (Biological Risk Index)]. GIS-based maps were utilized to depict the distribution of ecotoxicological risk assessment indices to provide a visual explanation by using the Inverse Distance Weighted (IDW) as an estimation method. Samples were collected seasonally from 12 stations selected on the Upper Sakarya River Basin, which is one of the longest fluvial ecosystems in Türkiye. As a result of applied indices, cadmium was found as the most hazardous heavy metal in terms of PERI and CF, nickel was found as the most hazardous heavy metal in terms of BRI and arsenic was found as the most hazardous heavy metal in terms of Igeo. As a result of applied PCI, 2 statistically significant factors explained 81.31% of the total variance. It was also determined that levels of almost all the investigated heavy metals (except Zn) in muscle tissues of fishes were under the permissible limits of Turkish legislation and the FAO.


Rivers , Ecosystem , Fresh Water , Risk Assessment
8.
Parasitology ; 150(8): 705-722, 2023 07.
Article En | MEDLINE | ID: mdl-37157105

Diplozoidae are common monogenean ectoparasites of cyprinoid fish, with the genus Paradiplozoon being the most diversified. Despite recent studies on Diplozoidae from Europe, Africa and Asia, the diversity, distribution and phylogeny of this parasite group appears to be still underestimated in the Middle East. The objective of this study was to investigate the diversity, endemism and host specificity of diplozoids parasitizing cyprinoid fish from the Middle East, considering this region as an important historical interchange of fish fauna, and to elucidate the phylogenetic position of Middle Eastern Paradiplozoon species within Diplozoidae. Four Paradiplozoon species were collected from 48 out of 94 investigated cyprinoid species. Three known species, Paradiplozoon homoion, Paradiplozoon bliccae and Paradiplozoon bingolensis, were recorded on new cyprinoid host species, and a new species, Paradiplozoon koubkovae n. sp., was recorded on Luciobarbus capito and Capoeta capoeta from the Caspian Sea basin in Iran and Turkey. Paradiplozoon bliccae, exhibiting a wide host range in the Middle East, expressed both morphological and genetic intraspecific variabilities. The four Paradiplozoon species collected in the Middle East were placed in divergent clades, showing the rich evolutionary history of diplozoid parasites in the Middle East. Our study also revealed that two lineages of African diplozoids have a Middle Eastern origin. We stress the importance of applying an integrative approach combining morphological, ecological and molecular methods to reveal the real diversity of diplozoids.


Cyprinidae , Trematoda , Animals , Phylogeny , Trematoda/genetics , Biological Evolution , Turkey/epidemiology
...