Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Front Immunol ; 15: 1354297, 2024.
Article En | MEDLINE | ID: mdl-38444857

Background: To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods: MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results: Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion: Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.


Gastrointestinal Microbiome , Honey , Neoplasms , Animals , Mice , RNA, Ribosomal, 16S/genetics , Administration, Oral , Tumor Microenvironment
2.
J Infect Public Health ; 16 Suppl 1: 33-44, 2023 Dec.
Article En | MEDLINE | ID: mdl-37953111

BACKGROUND: Cefiderocol (CFDC) is a novel siderophore-cephalosporin, which usually penetrates the bacteria through the iron-uptake pathways. Data is limited on the factors affecting CFDC activity and methods for overcoming resistance development. Synergistic approaches are needed to tackle antimicrobial resistance. This study aimed to determine CFDC activity on Klebsiella pneumoniae isolates from patients attending a single hospital in the United Arab Emirates (UAE), to explore the effect of ß-lactamases on CFDC activity and to enhance CFDC susceptibility in both iron-depleted and iron-enriched conditions. METHODS: We investigated 238 K. pneumoniae strains from diverse clinical sources. ß-lactamase genes were detected by PCR. Susceptibility to CFDC and 12 comparator antibiotics were tested. Combinations of CFDC with ß-lactamase inhibitors (BLIs) and/or an outer membrane (OM) permeabilizer (polymyxin B nonapeptide) were tested in iron-depleted and iron-enriched conditions. RESULTS: CFDC exhibited efficacy of 97.9%, against multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains, in addition to strains resistant to the last resort drugs such as colistin and tigecycline, including dual carbapenemase-producers (blaNDM and blaOXA-48-like) with MIC ≤ 0.06-8 µg/ml. It was effective in killing strains with single and multiple ß-lactamases; however, it lost activity in iron-enriched conditions. Synergy was achieved with dual combination of CFDC and BLIs, especially avibactam, which caused a significant reduction in MICs even in iron-enriched conditions. A significant reduction was seen with the triple combination including an OM permeabilizer plus avibactam. Killing-kinetic studies proved that the combination therapy caused dose reduction and faster killing by CFDC than the monotherapy. CONCLUSIONS: CFDC was deemed effective against MDR and XDR K. pneumoniae. Synergistic combination of CFDC with BLIs and OM permeabilizers could be effective to treat infections in iron-rich sites, but this should be investigated in vivo.


Klebsiella pneumoniae , Siderophores , Humans , Siderophores/pharmacology , Inpatients , United Arab Emirates , Kinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins , beta-Lactamases/genetics , Monobactams/pharmacology , Iron/pharmacology , Hospitals , Microbial Sensitivity Tests , Cefiderocol
3.
Saudi J Biol Sci ; 30(12): 103867, 2023 Dec.
Article En | MEDLINE | ID: mdl-38020230

Globally, Helicobacter pylori (H. pylori), a stomach pathogen, is present in around 50 % of the population. This bacterial infection produces persistent inflammation, which significantly raises the risk of duodenal, gastric ulcer, and stomach cancer. The goal of this study is to identify the vacA genotypes in H. pylori and analyze how they relate to medical conditions brought on by the bacteria and clarithromycin resistance. PCR was used to describe 115 endoscopic stomach samples from infected patients and identify vacA gene. Of the 115 research participants, H. pylori was found in 81 (70.4 %) of them. Of the isolated cultures, only 38 (69.1 %) were resistant to clarithromycin. VacA was discovered in 55 (67.9 %) of the samples that had H. pylori in them. Patients with gastritis were more likely to have s2m2 strains of infection (66.7 %), while those with gastric and duodenal ulcers were more likely to have s1m1 strains (64.7 %). VacA-positive H. pylori strains (60 % n = 33) were more resistant to clarithromycin versus (19.2 % n = 5) for vacA-negative bacteria. Clarithromycin resistance was significantly linked to vacA s2m2 in H. pylori isolates (75.9 %). According to the study's results, the vacA variants s1m1 and s2m2 have a strong connection with the emergence of H. pylori infections that cause peptic ulcer disease in the population of Iraq. Genetic testing is essential in predicting both the course of treatment and the outcome of H. pylori disease.

4.
Sci Rep ; 13(1): 19198, 2023 11 06.
Article En | MEDLINE | ID: mdl-37932491

Crohn's disease (CD) is a chronic inflammatory bowel disease. An imbalanced microbiome (dysbiosis) can predispose to many diseases including CD. The role of oral dysbiosis in CD is poorly understood. We aimed to explore microbiome signature and dysbiosis of the salivary microbiome in CD patients, and correlate microbiota changes to the level of inflammation. Saliva samples were collected from healthy controls (HC) and CD patients (n = 40 per group). Salivary microbiome was analyzed by sequencing the entire 16S rRNA gene. Inflammatory biomarkers (C-reactive protein and calprotectin) were measured and correlated with microbiome diversity. Five dominant species were significantly enriched in CD, namely Veillonella dispar, Megasphaera stantonii, Prevotella jejuni, Dolosigranulum pigrum and Lactobacillus backii. Oral health had a significant impact on the microbiome since various significant features were cariogenic as Streptococcus mutans or periopathogenic such as Fusobacterium periodonticum. Furthermore, disease activity, duration and frequency of relapses impacted the oral microbiota. Treatment with monoclonal antibodies led to the emergence of a unique species called Simonsiella muelleri. Combining immunomodulatory agents with monoclonal antibodies significantly increased multiple pathogenic species such as Salmonella enterica, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Loss of diversity in CD was shown by multiple diversity indices. There was a significant negative correlation between gut inflammatory biomarkers (particularly calprotectin) and α-diversity, suggesting more inflammation associated with diversity loss in CD. Salivary dysbiosis was evident in CD patients, with unique microbiota signatures and perturbed species that can serve as disease biomarkers or potential targets for microbiota modulation. The interplay of various factors collectively contributed to dysbiosis, although each factor probably had a unique effect on the microbiome. The emergence of pathogenic bacteria in the oral cavity of CD patients is alarming since they can disturb gut homeostasis and induce inflammation by swallowing, or hematogenous spread of microbiota, their metabolites, or generated inflammatory mediators.


Crohn Disease , Gastrointestinal Microbiome , Microbiota , Humans , Crohn Disease/pathology , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Inflammation , Biomarkers , Antibodies, Monoclonal , Leukocyte L1 Antigen Complex
5.
Eur J Clin Microbiol Infect Dis ; 42(11): 1395-1400, 2023 Nov.
Article En | MEDLINE | ID: mdl-37828413

Cefiderocol (CFDC) is the first-in-class siderophore-cephalosporin. Klebsiella pneumoniae strain that is extremely resistant to CFDC (MIC: 256 µg/ml) was isolated for the first time in the United Arab Emirates from a patient with pneumonia and sepsis. It belonged to sequence-type 14 (ST14), with a novel core genome ST. Resistance was driven by the co-expression of ß-lactamases (blaNDM-1, blaOXA-232 and blaCTX-M-15) and a mutation in catecholate-siderophore receptor, utilized by CFDC to enter the bacterial cell. Synergistic combinations (ß-lactamase inhibitors, aztreonam plus CFDC) re-sensitized the bacteria to CFDC. Although CFDC resistance is multifactorial, the combination with ß-lactamase inhibitors represents a promising approach in resistance reversal for fighting superbugs.


Klebsiella pneumoniae , Sepsis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Siderophores/therapeutic use , Siderophores/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Sepsis/drug therapy , Genomics , Cefiderocol
6.
Nutrients ; 15(15)2023 Jul 29.
Article En | MEDLINE | ID: mdl-37571313

Inflammatory bowel disease (IBD) is a complex disorder characterized by chronic inflammation of the gastrointestinal tract (GIT). IBD mainly includes two distinct diseases, namely Crohn's disease and ulcerative colitis. To date, the precise etiology of these conditions is not fully elucidated. Recent research has shed light on the significant role of the oral and gut microbiome in the development and progression of IBD and its collective influence on gut health. This review aims to investigate the connection between the oral and gut microbiome in the context of IBD, exploring the intricate interplay between these microbial communities and their impact on overall gut health. Recent advances in microbiome research have revealed a compelling link between the oral and gut microbiome, highlighting their pivotal role in maintaining overall health. The oral cavity and GIT are two interconnected ecosystems that harbor complex microbial communities implicated in IBD pathogenesis in several ways. Reduction in diversity and abundance of beneficial bacterial species with the colonization of opportunistic pathogens can induce gut inflammation. Some of these pathogens can arise from oral origin, especially in patients with oral diseases such as periodontitis. It is essential to discern the mechanisms of microbial transmission, the impact of oral health on the gut microbiome, and the potential role of dysbiosis in disease development. By elucidating this relationship, we can enhance our understanding of IBD pathogenesis and identify potential therapeutic avenues for managing the disease. Furthermore, innovative strategies for modulating the oral and gut microbiome can promote health and prevent disease occurrence and progression.


Crohn Disease , Inflammatory Bowel Diseases , Microbiota , Humans , Health Promotion , Inflammatory Bowel Diseases/microbiology , Crohn Disease/therapy , Inflammation , Dysbiosis/microbiology
7.
Antibiotics (Basel) ; 12(6)2023 May 29.
Article En | MEDLINE | ID: mdl-37370299

Antimicrobial resistance, with the production of extended-spectrum ß-lactamases (ESBL) and carbapenemases, is common in the opportunistic pathogen, Klebsiella pneumoniae. This organism has a genome that can contain clustered regularly interspaced short palindromic repeats (CRISPRs), which operate as a defense mechanism against external invaders such as plasmids and viruses. This study aims to determine the association of the CRISPR/Cas systems with antibiotic resistance in K. pneumoniae isolates from Iraqi patients. A total of 100 K. pneumoniae isolates were collected and characterized according to their susceptibility to different antimicrobial agents. The CRISPR/Cas systems were detected via PCR. The phenotypic detection of ESBLs and carbapenemases was performed. The production of ESBL was detected in 71% of the isolates. Carbapenem-resistance was detected in 15% of the isolates, while only 14% were susceptible to all antimicrobial agents. Furthermore, the bacteria were classified into multidrug (77%), extensively drug-resistant (11.0%) and pandrug-resistant (4.0%). There was an inverse association between the presence of the CRISPR/Cas systems and antibiotic resistance, as resistance was higher in the absence of the CRISPR/Cas system. Multidrug resistance in ESBL-producing and carbapenem-resistant K. pneumoniae occurred more frequently in strains negative for the CRISPR/Cas system. Thus, we conclude that genes for exogenous antibiotic resistance can be acquired in the absence of the CRISPR/Cas modules that can protect the bacteria against acquiring foreign DNA.

8.
Int J Mol Sci ; 24(10)2023 May 12.
Article En | MEDLINE | ID: mdl-37240007

The global spread of multidrug-resistant (MDR) bacteria increases the demand for the discovery of new antibiotics and adjuvants. Phenylalanine-arginine ß-naphthylamide (PAßN) is an inhibitor of efflux pumps in Gram-negative bacteria, such as the AcrAB-TolC complex in Escherichia coli. We aimed to explore the synergistic effect and mechanism of action of PAßN combined with azithromycin (AZT) on a group of MDR E. coli strains. Antibiotic susceptibility was tested for 56 strains, which were screened for macrolide resistance genes. Then, 29 strains were tested for synergy using the checkerboard assay. PAßN significantly enhanced AZT activity in a dose-dependent manner in strains expressing the mphA gene and encoding macrolide phosphotransferase, but not in strains carrying the ermB gene and encoding macrolide methylase. Early bacterial killing (6 h) was observed in a colistin-resistant strain with the mcr-1 gene, leading to lipid remodeling, which caused outer membrane (OM) permeability defects. Clear OM damage was revealed by transmission electron microscopy in bacteria exposed to high doses of PAßN. Increased OM permeability was also proven by fluorometric assays, confirming the action of PAßN on OM. PAßN maintained its activity as an efflux pump inhibitor at low doses without permeabilizing OM. A non-significant increase in acrA, acrB, and tolC expression in response to prolonged exposure to PAßN was noted in cells treated with PAßN alone or with AZT, as a reflection of bacterial attempts to counteract pump inhibition. Thus, PAßN was found to be effective in potentiating the antibacterial activity of AZT on E. coli through dose-dependent action. This warrants further investigations of its effect combined with other antibiotics on multiple Gram-negative bacterial species. Synergetic combinations will help in the battle against MDR pathogens, adding new tools to the arsenal of existing medications.


Anti-Bacterial Agents , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/metabolism , Azithromycin/pharmacology , Drug Resistance, Bacterial , Macrolides/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins/metabolism , Phenylalanine/pharmacology , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 07.
Article En | MEDLINE | ID: mdl-37108065

The human body is a superorganism that harbors trillions of microbes, most of which inhabit the gut. To colonize our bodies, these microbes have evolved strategies to regulate the immune system and maintain intestinal immune homeostasis by secreting chemical mediators. There is much interest in deciphering these chemicals and furthering their development as novel therapeutics. In this work, we present a combined experimental and computational approach to identifying functional immunomodulatory molecules from the gut microbiome. Based on this approach, we report the discovery of lactomodulin, a unique peptide from Lactobacillus rhamnosus that exhibits dual anti-inflammatory and antibiotic activities and minimal cytotoxicity in human cell lines. Lactomodulin reduces several secreted proinflammatory cytokines, including IL-8, IL-6, IL-1ß, and TNF-α. As an antibiotic, lactomodulin is effective against a range of human pathogens, and is most potent against antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The multifunctional activity of lactomodulin affirms that the microbiome encodes evolved functional molecules with promising therapeutic potential.


Methicillin-Resistant Staphylococcus aureus , Microbiota , Humans , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Anti-Inflammatory Agents/pharmacology
10.
Nutrients ; 15(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36839184

Obesity causes gut dysbiosis; nevertheless, little is known about the oral microbiome. We aimed to identify differences in the subgingival microbiota influenced by body weight and periodontal status. Patients (n = 75) recruited at the University Dental Hospital Sharjah, United Arab Emirates, were distributed into three equal groups (healthy weight, overweight, and obese) sub-divided into having either no-mild (NM) or moderate-severe (MS) periodontitis. Subgingival plaques were collected. Microbiota were identified by 16S rRNA sequencing using nanopore technology. Linear discriminant analysis demonstrated significant bacterial biomarkers for body weight and periodontal health. Unique microbiota signatures were identified, with enrichment of periopathogens in patients with MS periodontitis (Aggregatibacter actinomycetemcomitans in obese, Tannerella forsythia and Treponema denticola in overweight, Porphyromonas gingivalis and Fusobacterium nucleatum in healthy weight), thus reflecting differences in the microbiota affected by body weight. Other pathogenic bacteria, such as Salmonella enterica and Klebsiella pneumoniae, were enriched in overweight subjects with NM periodontitis, suggesting an increase in the relative abundance of pathogens even in patients with good periodontal health if they were overweight. Alpha and beta diversities were significantly different among the groups. Dysbiosis of the subgingival microbiota in obese and overweight individuals was associated with increased prevalence and severity of periodontal disease, which was correlated with the body mass index. This study highlights the immense importance of the oral microbiome and the need for lifestyle and dental interventions to resolve oral dysbiosis and restore normal homeostasis.


Microbiota , Periodontal Diseases , Periodontitis , Humans , Overweight , Dysbiosis , RNA, Ribosomal, 16S/genetics , Periodontal Diseases/microbiology , Porphyromonas gingivalis , Periodontitis/microbiology , Obesity
11.
Front Microbiol ; 14: 1336856, 2023.
Article En | MEDLINE | ID: mdl-38318129

Multidrug-resistant bacterial infections present a serious challenge to global health. In addition to the spread of antibiotic resistance, some bacteria can form persister cells which are tolerant to most antibiotics and can lead to treatment failure or relapse. In the present work, we report the discovery of a new class of small molecules with potent antimicrobial activity against Gram-positive bacteria and moderate activity against Gram-negative drug-resistant bacterial pathogens. The lead compound SIMR 2404 had a minimal inhibitory concentration (MIC) of 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate Staphylococcus aureus (VISA). The MIC values against Gram-negative bacteria such as Escherichia coli and Actinobacteria baumannii were between 8-32 µg/mL. Time-kill experiments show that compound SIMR 2404 can rapidly kill tested bacteria. Compound SIMR 2404 was also found to rapidly kill MRSA persisters which display high levels of tolerance to conventional antibiotics. In antibiotic evolution experiments, MRSA quickly developed resistance to ciprofloxacin but failed to develop resistance to compound SIMR 2404 even after 24 serial passages. Compound SIMR 2404 was not toxic to normal human fibroblast at a concentration of 4 µg/mL which is twice the MIC concentration against MRSA. However, at a concentration of 8 µg/mL or higher, it showed cytotoxic activity indicating that it is not ideal as a candidate against Gram-negative bacteria. The acceptable toxicity profile and rapid antibacterial activity against MRSA highlight the potential of these molecules for further studies as anti-MRSA agents.

12.
PLoS One ; 17(12): e0277946, 2022.
Article En | MEDLINE | ID: mdl-36580460

BACKGROUND: Cefiderocol (CFDC) is a novel siderophore-cephalosporin, effective against multidrug-resistant Gram-negative bacteria. As it has a siderophore side chain, it can utilize iron acquisition systems for penetration of the bacterial outer membrane. We aimed to elucidate the role of siderophores and iron uptake receptors in defining Klebsiella pneumoniae susceptibility to CFDC. METHODS: Initially, 103 K. pneumoniae strains were characterized for susceptibility to different antibiotics including CFDC. CFDC minimum inhibitory concentrations (MIC) were determined in iron-depleted and iron-enriched conditions. Iron uptake genes including siderophores, their receptors, ferric citrate (fecA) and iron uptake (kfu) receptors were detected by PCR in all the strains. For 10 selected strains, gene expression was tested in iron-depleted media with or without CFDC treatment and compared to expression in iron-enriched conditions. RESULTS: CFDC exhibited 96.1% susceptibility, being superior to all the other antibiotics (MIC50: 0.5 and MIC90: 4 µg/ml). Only three strains (2.9%) were intermediately susceptible and a pandrug resistant strain (0.97%) was resistant to CFDC (MIC: 8 and 256 µg/ml, respectively). The presence of kfu and fecA had a significant impact on CFDC MIC, especially when co-produced, and if coupled with yersiniabactin receptor (fyuA). CFDC MICs were negatively correlated with enterobactin receptor (fepA) expression and positively correlated with expression of kfu and fecA. Thus, fepA was associated with increased susceptibility to CFDC, while kfu and fecA were associated with reduced susceptibility to CFDC. CFDC MICs increased significantly in iron-enriched media, with reduced expression of siderophore receptors, hence, causing less drug uptake. CONCLUSION: Iron acquisition systems have a significant impact on CFDC activity, and their altered expression is a factor leading to reduced susceptibility. Iron concentration is also a major player affecting CFDC susceptibility; therefore, it is essential to explore possible ways to improve the drug activity to facilitate its use to treat infections in iron-rich sites.


Klebsiella pneumoniae , Siderophores , Siderophores/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Monobactams/pharmacology , Iron/metabolism , Microbial Sensitivity Tests , Cefiderocol
13.
Front Microbiol ; 13: 998671, 2022.
Article En | MEDLINE | ID: mdl-36212888

Antimicrobial resistance is a global public health threat. Antibiotic development pipeline has few new drugs; therefore, using antibiotic adjuvants has been envisioned as a successful method to preserve existing medications to fight multidrug-resistant (MDR) pathogens. In this study, we investigated the synergistic effect of a polymyxin derivative known as polymyxin B nonapeptide (PMBN) with azithromycin (AZT). A total of 54 Escherichia coli strains were first characterized for macrolide resistance genes, and susceptibility to different antibiotics, including AZT. A subset of 24 strains was then selected for synergy testing by the checkerboard assay. PMBN was able to re-sensitize the bacteria to AZT, even in strains with high minimum inhibitory concentrations (MIC: 32 to ≥128 µg/ml) for AZT, and in strains resistant to the last resort drugs such as colistin and meropenem. The fractional inhibitory concentration index was lower than 0.5, demonstrating that PMBN and AZT combinations had a synergistic effect. The combinations worked efficiently in strains carrying mphA gene encoding macrolide phosphotransferase which can cause macrolide inactivation. However, the combinations were inactive in strains having an additional ermB gene encoding macrolide methylase which causes ribosomal drug target alteration. Killing kinetics study showed a significant reduction of bacterial growth after 6 h of treatment with complete killing achieved after 24 h. Transmission electron microscopy showed morphological alterations in the bacteria treated with PMBN alone or in combination with AZT, with evidence of damage to the outer membrane. These results suggested that PMBN acted by increasing the permeability of bacterial outer membrane to AZT, which was also evident using a fluorometric assay. Using multiple antimicrobial agents could therefore be a promising strategy in the eradication of MDR bacteria. PMBN is a good candidate for use with other antibiotics to potentiate their activity, but further studies are required in vivo. This will significantly contribute to resolving antimicrobial resistance crisis.

14.
Sci Rep ; 12(1): 2861, 2022 02 21.
Article En | MEDLINE | ID: mdl-35190583

This study aimed to assess the effect of smoking different tobacco types on the supragingival microbiome and its relation to dental caries. Forty supragingival plaque samples were collected from smokers of a single tobacco type and non-smokers seeking treatment at the University Dental Hospital Sharjah, UAE. DMFT (decayed, missing and filled teeth) was determined for all participants who were divided into two groups: no-low caries (NC-LC: DMFT = 0-4; n = 18) and moderate-high caries (MC-HC: DMFT = 5-20; n = 22). 16S rRNA gene was sequenced using third-generation sequencing with Nanopore technology. Microbiome composition and diversity were compared. Caries was most common among cigarette smokers. Supragingival microbiota were significantly altered among smokers of different tobacco types. In cigarette smokers, cariogenic bacteria from genus Streptococcus (including S. mutans) were significantly more among subjects with NC-LC, while Lactobacilli (including L. fermentum) were more among subjects with MC-HC. In medwakh smokers, several periodontopathogens were significantly elevated in subjects with NC-LC, while other pathogenic bacteria (as Klebsiella pneumoniae) were more in those with MC-HC. Cigarette and alternative tobacco smoking had a significant impact on the supragingival microbiome. Indeed, further studies are required to unravel the consequences of oral dysbiosis triggered by smoking. This could pave the way for microbiota-based interventional measures for restoring a healthy oral microbiome which could be a promising strategy to prevent dental caries.


Dental Caries/etiology , Dental Caries/microbiology , Dental Plaque/microbiology , Gingiva/microbiology , Microbiota , Nicotiana/adverse effects , Nicotiana/classification , Smoking/adverse effects , Adolescent , Adult , Dental Caries/prevention & control , Dysbiosis/etiology , Dysbiosis/microbiology , Female , Humans , Lactobacillus , Male , Middle Aged , Streptococcus , Tobacco Products/adverse effects , Young Adult
15.
Front Microbiol ; 13: 823394, 2022.
Article En | MEDLINE | ID: mdl-35178043

The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienaymé and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 µg/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.

16.
Nutrients ; 13(11)2021 Oct 27.
Article En | MEDLINE | ID: mdl-34836074

Children with autism spectrum disorder (ASD) report a higher frequency and severity of gastrointestinal disorders (GID) than typically developing (TD) children. GID-associated discomfort increases feelings of anxiety and frustration, contributing to the severity of ASD. Emerging evidence supports the biological intersection of neurodevelopment and microbiome, indicating the integral contribution of GM in the development and function of the nervous system, and mental health, and disease balance. Dysbiotic GM could be a contributing factor in the pathogenesis of GID in children with ASD. High-fat diets may modulate GM through accelerated growth of bile-tolerant bacteria, altered bacterial ratios, and reduced bacterial diversity, which may increase the risk of GID. Notably, saturated fatty acids are considered to have a pronounced effect on the increase of bile-tolerant bacteria and reduction in microbial diversity. Additionally, omega-3 exerts a favorable impact on GM and gut health due to its anti-inflammatory properties. Despite inconsistencies in the data elaborated in the review, the dietary fat composition, as part of an overall dietary intervention, plays a role in modulating GID, specifically in ASD, due to the altered microbiome profile. This review emphasizes the need to conduct future experimental studies investigating the effect of diets with varying fatty acid compositions on GID-specific microbiome profiles in children with ASD.


Autism Spectrum Disorder/microbiology , Dietary Fats/pharmacology , Dysbiosis/psychology , Gastrointestinal Diseases/psychology , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis/drug effects , Child , Diet/adverse effects , Diet/psychology , Humans
17.
Cancers (Basel) ; 13(11)2021 Jun 07.
Article En | MEDLINE | ID: mdl-34200264

(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.

19.
Sci Rep ; 11(1): 1113, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441919

Smoking is a risk factor for periodontal disease, and a cause of oral microbiome dysbiosis. While this has been evaluated for traditional cigarette smoking, there is limited research on the effect of other tobacco types on the oral microbiome. This study investigates subgingival microbiome composition in smokers of different tobacco types and their effect on periodontal health. Subgingival plaques were collected from 40 individuals, including smokers of either cigarettes, medwakh, or shisha, and non-smokers seeking dental treatment at the University Dental Hospital in Sharjah, United Arab Emirates. The entire (~ 1500 bp) 16S rRNA bacterial gene was fully amplified and sequenced using Oxford Nanopore technology. Subjects were compared for the relative abundance and diversity of subgingival microbiota, considering smoking and periodontal condition. The relative abundances of several pathogens were significantly higher among smokers, such as Prevotella denticola and Treponema sp. OMZ 838 in medwakh smokers, Streptococcus mutans and Veillonella dispar in cigarette smokers, Streptococcus sanguinis and Tannerella forsythia in shisha smokers. Subgingival microbiome of smokers was altered even in subjects with no or mild periodontitis, probably making them more prone to severe periodontal diseases. Microbiome profiling can be a useful tool for periodontal risk assessment. Further studies are recommended to investigate the impact of tobacco cessation on periodontal disease progression and oral microbiome.


Bacteria/classification , Bacteria/growth & development , Dental Plaque/microbiology , Microbiota , Periodontitis/epidemiology , Periodontium/microbiology , Tobacco Smoking , Adolescent , Adult , Bacteria/isolation & purification , Cigarette Smoking , Female , Gingiva/microbiology , Humans , Male , Middle Aged , Pilot Projects , RNA, Ribosomal, 16S/genetics , United Arab Emirates/epidemiology , Young Adult
20.
Chem Biol Interact ; 333: 109318, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33186599

Antimicrobial resistance is at increasing risk worldwide since it is threatening the ability to control common infectious diseases, resulting in prolonged illness, disability, and death. Herein, we inspired by the effective plant phytochemical mechanisms evolved to overcome microbial pathogenesis and evolved resistance. Cuminaldehyde is previously reported as the main antibacterial component in Calligonum comosum essential oil. The toxicity of cuminaldehyde limits its medical application for human use. On the other hand, compared to cuminaldehyde, the plant total extract showed similar antibacterial activities, while maintained lower toxicity, although it contains 22 times less cuminaldehyde. Thus, we assumed that other components in the plant extracts specifically affect bacteria but not mammalian cells. Bioassay-guided fractionations combined with comparative metabolomics analysis of different plant extracts were employed. The results revealed the presence of bacterial species-specific phytochemicals. Cinnamyl linoleate and linoleic acid enhanced the antibacterial activities of cuminaldehyde and ampicillin against S. aureus including MRSA, while decanal and cinnamyl linoleate enhanced the activities against E. coli. Computational modeling and enzyme inhibition assays indicated that cinnamyl linoleate selectively bind to bacterial ribosomal RNA methyltransferase, an important enzyme involved in the virulence and resistance of multidrug resistant bacteria. The results obtained can be employed for the future preparation of pharmaceutical formula containing cinnamyl linoleate in order to overcome evolved multidrug resistance behaviors by microbes.


Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Caryophyllales/chemistry , Drug Design , Drug Resistance, Bacterial/drug effects , Oils, Volatile/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Chemistry Techniques, Synthetic , Drug Resistance, Multiple/drug effects , Humans
...