Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Molecules ; 28(8)2023 Apr 17.
Article En | MEDLINE | ID: mdl-37110767

Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in vitro and In vivo methods. Bovine serum albumin (BSA), BSA-methylglyoxal and BSA-glucose methods were used to assess anti-glycation activity in vitro, while in vivo hypoglycemic effects were determined by oral glucose tolerance test (OGTT). Moreover, the hypolipidemic and nephroprotective effects were studied and phenolics were detected using high performance liquid chromatography (HPLC). In vitro anti-glycation showed a significant reduction in glycated end-products formation at 1, 0.25 and 0.5 mg/mL. In vivo hypoglycemic effects were tested at 200, 400 and 600 mg/kg by measuring blood glucose, insulin, hemoglobin (Hb) and HbA1c. The synergistic effect of extract/fractions (600 mg/kg) with insulin exhibited a pronounced glucose reduction in alloxan diabetic rats. The oral glucose tolerance test (OGTT) demonstrated a decline in glucose concentration. Moreover, extract/fractions (600 mg/kg) exhibited an improved lipid profile, increased Hb, HbA1c levels and body weight for 30 days. Furthermore, diabetic animals significantly exhibited an upsurge in total protein, albumin and globulin levels, along with a significant improvement in urea and creatinine after extract/fractions administration for 42 days. Phytochemistry revealed alkaloids, tannins, glycosides, flavonoids, phenols, terpenoids and saponins. HPLC showed the presence of phenolics in ethyl acetate fraction that could be accountable for pharmacological actions. Therefore, it can be concluded that Berberis calliobotrys possesses strong hypoglycemic, hypolipidemic and nephroprotective effects, and could be a potential therapeutic agent for diabetes treatment.


Berberis , Diabetes Mellitus, Experimental , Rats , Animals , Hypoglycemic Agents/chemistry , Alloxan , Berberis/metabolism , Glycated Hemoglobin , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/chemistry , Blood Glucose , Glucose/adverse effects , Insulin , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use
2.
Int J Pharm ; 529(1-2): 238-244, 2017 Aug 30.
Article En | MEDLINE | ID: mdl-28689963

Expanded polytetrafluoroethylene ePTFE grafts are mostly employed to replace damaged blood vessels and to restore normal blood flow. However, the dilemma of early thrombosis, inflammation, and development of biofilms after implantation limit ePTFE long-term patency and restrict the patient's life quality. In this study, poly lactic-co-glycolic acid (PLGA) nanoparticles were covalently immobilized on ePTFE surface for local therapeutic purposes. First, the ePTFE surface was primarily oxidized by H2O2/H2SO4 solution to create hydroxyl groups. Consequently, free amino groups were introduced onto ePTFE surface by an aminolyzation reaction of the activated hydroxyl groups using 3-aminopropyl triethoxysilane. The produced amino groups were further used as anchor sites for covalent immobilization of previously prepared PLGA nanoparticles. The functional groups originated on ePTFE surface were confirmed by FTIR analysis. Furthermore, the scanning electron microscopy visualization evidenced a homogeneous distribution pattern of the immobilized PLGA nanoparticles on the surface. The immobilized PLGA nanoparticles showed stability on ePTFE surface under blood flow mimetic conditions. Additionally, light microscopy observation confirmed the biocompatibility of mouse L929 fibroblasts on the nano-coated ePTFE graft. The cellular adhesion and growth did not reveal remarkable cytotoxicity in the tested modified ePTFE grafts.


Blood Vessel Prosthesis , Lactic Acid/chemistry , Nanoparticles , Polyglycolic Acid/chemistry , Polytetrafluoroethylene/chemistry , Animals , Cell Line , Glycols , Humans , Hydrogen Peroxide , Polylactic Acid-Polyglycolic Acid Copolymer
3.
Mater Sci Eng C Mater Biol Appl ; 58: 78-87, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26478289

Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 µg/cm(2), as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection.


Cell Adhesion/drug effects , Enzymes, Immobilized/chemistry , Muramidase/chemistry , Polyethylene Terephthalates/chemistry , Animals , Bacteria/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biofilms/drug effects , Cell Line , Mice , Muramidase/pharmacology , Surface Properties
4.
Int J Pharm ; 485(1-2): 270-6, 2015 May 15.
Article En | MEDLINE | ID: mdl-25796119

Multifunctional network-structured polymeric coat for woven and knitted forms of crimped polyethylene terephthalate PET graft was developed to limit graft-associated infections. A newly synthesized antibacterial sulfadimethoxine polyhexylene adipate-b-methoxy polyethylene oxide (SD-PHA-b-MPEO) di-block copolymer was employed. Our figures of merit revealed that the formed coat showed a porous topographic architecture which manifested paramount properties, mostly bacterial anti-adhesion efficiency and biocompatibility with host cells. Compared to untreated grafts, the coat presented marked reduction of adhered Gram-positive Staphylococcus epidermidis previously isolated from a patient's vein catheter by 2.6 and 2.3 folds for woven and knitted grafts, respectively. Similarly, bacterial anti-adhesion effect was observed for Staphylococcus aureus by 2.3 and 2.4 folds, and by 2.9 and 2.7 folds for Gram-negative Escherichia coli for woven and knitted grafts, respectively. Additionally, adhesion and growth characteristics of L929 cells on the modified grafts revealed no significant effect on the biocompatibility. In conclusion, coating of PET with (SD-PHA-b-MPEO) is a versatile approach offers the desired bacterial anti-adhesion effect and host biocompatibility.


Anti-Bacterial Agents/administration & dosage , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Coated Materials, Biocompatible , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Polyethylene Terephthalates , Polymers/chemistry , Prosthesis Design , Prosthesis-Related Infections/prevention & control , Sulfadimethoxine/administration & dosage , Animals , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Blood Vessel Prosthesis/adverse effects , Blood Vessel Prosthesis Implantation/adverse effects , Cell Line , Escherichia coli/drug effects , Escherichia coli/growth & development , Heart Valve Prosthesis/adverse effects , Heart Valve Prosthesis Implantation/adverse effects , Mice , Microscopy, Electron, Scanning , Porosity , Prosthesis-Related Infections/microbiology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development , Sulfadimethoxine/chemistry , Surface Properties
5.
Mater Sci Eng C Mater Biol Appl ; 43: 538-46, 2014 Oct.
Article En | MEDLINE | ID: mdl-25175248

Short-term patency of polyethylene terephthalate (PET) cardiovascular grafts is determined mainly by the inherent thrombogenicity and improper endothelialization following grafts implantation. The aim of the present study was to immobilize heparin to develop thrombus resistant grafts. Additionally, collagen was co-immobilized to enhance the host cell compatibility. The synthetic woven and knitted forms of crimped PET grafts were surface modified by Denier reduction to produce functional carboxyl groups. The produced groups were used as anchor sites for covalent immobilization of heparin or co-immobilization of heparin/collagen by the end-point method. The modified surface was characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biological activity of immobilized molecules was investigated in vitro using direct blood coagulation test, and "platelet deposition under flow condition. Furthermore, the biocompatibility of modified grafts with host cells was assessed using L929 cell as model. All modified grafts showed significant resistance against fibrin and clot formation. The number of deposited platelets on heparin-immobilized woven and knitted grafts obviously decreased by 3 fold and 2.8 fold per unit surface area respectively, while the heparin/collagen co-immobilized grafts showed only a decrease by 1.7 and 1.8 fold compared to unmodified PET. Heparin-immobilized grafts reported no significant effect on L929 cells adhesion and growth (P>0.05), conversely, collagen co-immobilization considerably increased cell adhesion almost ~1.3 fold and 2 fold per unit surface area for woven and knitted grafts respectively. Our results emphasize that immobilization of heparin minimized the inherent thrombogenicity of the PET grafts. The simultaneous co-immobilization of collagen supported host cell adhesion and growth required for the grafts biocompatibility.


Coated Materials, Biocompatible , Collagen/administration & dosage , Heparin/administration & dosage , Polyethylene Terephthalates , Thrombosis/prevention & control , Vascular Grafting , Humans , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
...