Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Neurosci ; : 1-9, 2023 Sep 02.
Article En | MEDLINE | ID: mdl-37659008

BACKGROUND AND AIM: Monosodium glutamate (MSG) is used in food-additives, and the Food and Drug Administration has placed it under intense scrutiny following several reports that it causes glutamate neurotoxicity. Ashwagandha (ASH) roots are traditionally used for memory enhancement. This study aimed to evaluate the nootropic activity of ASH as well as its therapeutic anti-amnesic activity against MSG-induced hippocampal-dependent spatial memory impairment and hippocampal-NMDAR modulation. METHOD: A total of 36 rats were divided equally into six groups (n = 6 in each group); the rats in the normal and negative groups were administered daily doses of normal saline and MSG (300 mg/kg), respectively, for 21 days. Two nootropic groups were administered ASH at 300 and 500 mg/kg o.p., respectively, for 21 days. Two other treatment groups were administered daily doses of MSG 300 mg/kg o.p. as well as 300 mg/kg and 500 mg/kg o.p. of ASH for 21 days. The rats' spatial memory was assessed for five days using the MWM. Additionally, NMDAR were measured quantitatively by immunohistochemistry. RESULTS: We found that the rats in the nootropic groups showed significantly enhanced nootropic activity characterized by improved hippocampal-dependent spatial memory, as well as increases in the level of NMDAR in the Cornu Ammonis 1 region of their hippocampus. Moreover, we elucidated the therapeutic potential of ASH to protect against the depression of spatial memory caused by MSG-induced neurotoxicity. CONCLUSION: Further, we elucidated a strong correlation between NMDAR-positive cells in the hippocampus and enhancement of spatial learning induced by long-term administration of ASH as well as a strong correlation between NMDAR positive cells in the hippocampus and depression of spatial learning induced by long-term administration of ASH and MSG.

2.
Nutrients ; 15(6)2023 Mar 22.
Article En | MEDLINE | ID: mdl-36986277

Alzheimer's disease is regarded as a common neurodegenerative disease that may lead to dementia and the loss of memory. We report here the nootropic and anti-amnesic effects of both peppermint and rosemary oils using a rat model of scopolamine-induced amnesia-like AD. Rats were administered orally with two doses (50 and 100 mg/kg) of each single oil and combined oils. The positive group used donepezil (1 mg/kg). In the therapeutic phase, rats were administered scopolamine (1 mg/kg) through the oral administration of oils. During the nootropic phase, both oils showed a significant (p < 0.05) decrease in radial arm maze latency times, working memory, and reference memory errors compared with the normal group, along with significant (p < 0.05) enhancements of long-term memory during the passive avoidance test. Therapeutic phase results revealed significant enhancements of memory processing compared with the positive groups. In the hippocampus, oils exhibited an elevation of BDNF levels in a dose-dependent manner. Immunohistochemistry findings showed increased hippocampal neurogenesis suppressed by scopolamine in the sub-granular zone, and the anti-amnesic activity of single oil was enhanced when the two oils combined. Gas chromatography-mass spectrometry (GCMS) of the two oils revealed sufficient compounds (1,8-Cineole, α-Pinene, menthol and menthone) with potential efficacy in the memory process and cognitive defects. Our work suggests that both oils could enhance the performance of working and spatial memory, and when combined, more anti-amnesic activity was produced. A potential enhancement of hippocampal growth and neural plasticity was apparent with possible therapeutic activity to boost memory in AD patients.


Alzheimer Disease , Neurodegenerative Diseases , Nootropic Agents , Oils, Volatile , Rosmarinus , Rats , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Scopolamine/adverse effects , Mentha piperita , Rosmarinus/chemistry , Nootropic Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Spatial Memory , Dietary Supplements , Hippocampus
3.
Brain Sci ; 13(1)2022 Dec 30.
Article En | MEDLINE | ID: mdl-36672053

BACKGROUND: This study sought to determine whether (1) evidence is available of interactions between anodal tDCS and oscillated tDCS stimulation patterns to increase the power of endogenous brain oscillations and (2) the frequency matching the applied anodal otDCS's frequency and the brain's dominant intrinsic frequency influence power shifting during stimulation pattern sessions by both anodal DCS and anodal oscillated DCS. METHOD: Rats received different anodal tDCS and otDCS stimulation patterns using 8.5 Hz and 13 Hz state-related dominant intrinsic frequencies of anodal otDCS. The rats were divided into groups with specific stimulation patterns: group A: tDCS-otDCS (8.5 Hz)-otDCS (13 Hz); group B: otDCS (8.5 Hz)-tDCS-otDCS (13 Hz); group C: otDCS (13 Hz)-tDCS-otDCS (8.5 Hz). Acute relative power changes (i.e., following 10 min stimulation sessions) in six frequency bands-delta (1.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-12 Hz), beta-1 (12-15 Hz) and beta-2 (15-20 Hz)-were compared using three factors and repeated ANOVA measurement. RESULTS: For each stimulation, tDCS increased theta power band and, above bands alpha and beta, a drop in delta power was observed. Anodal otDCS had a mild increasing power effect in both matched intrinsic and delta bands. In group pattern stimulations, increased power of endogenous frequencies matched exogenous otDCS frequencies-8.5 Hz or 13 Hz-with more potent effects in upper bands. The power was markedly more potent with the otDCS-tDCS stimulation pattern than the tDCS-otDCS pattern. SIGNIFICANCE: The findings suggest that the otDCS-tDCS pattern stimulation increased the power in matched intrinsic oscillations and, significantly, in the above bands in an ascending order. We provide evidence for the successful corporation between otDCS (as frequency-matched guidance) and tDCS (as a power generator) rather than tDCS alone when stimulating a desired brain intrinsic band (herein, tES specificity).

...