Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Heliyon ; 9(5): e15560, 2023 May.
Article En | MEDLINE | ID: mdl-37159701

Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 µg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.

2.
Biomed Pharmacother ; 138: 111483, 2021 Jun.
Article En | MEDLINE | ID: mdl-33744756

The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.


Cytotoxins/toxicity , Magnesium Oxide/toxicity , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Platinum/toxicity , A549 Cells , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , HT29 Cells , Humans , Inflammation Mediators/metabolism , Oxidative Stress/physiology
3.
Nanomedicine (Lond) ; 15(6): 547-561, 2020 03.
Article En | MEDLINE | ID: mdl-32063101

Aim: To prepare, physicochemically characterize and determine the anticancer effects of palladium-doped magnesia (Pd/MgO) nanoparticles. Materials & methods: Pd/MgO nanoparticles were prepared by the co-precipitation method from the aqueous solution of Mg(NO3)2.6H2O using K2CO3 and the impregnation of MgO into palladium acetylacetonate. Results: Pd/MgO nanoparticles were between 47 and 70 nm in size, cuboid in shape, and tended to form aggregates. Nanoparticles were more antiproliferative toward cancer than the normal cells. In cancer cells, Pd/MgO nanoparticles induced apoptosis by increasing caspase activities and stimulating cytochrome C release. The anticancer effects of Pd/MgO nanoparticles were accentuated by the upregulation of Bax and p53 and downregulation of Bcl-2 protein expressions. Conclusion: Pd/MgO nanoparticles have potential to be developed as an anticancer compound.


Antineoplastic Agents/pharmacology , Magnesium Oxide/pharmacology , Nanoparticles , Palladium , Apoptosis , Cell Line, Tumor , Cytochromes c , Humans
4.
Int J Nanomedicine ; 10: 5739-50, 2015.
Article En | MEDLINE | ID: mdl-26425082

Iron-manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner-Emmett-Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron-manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron-manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 µg/mL to 500 µg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron-manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions.


Cell Proliferation/drug effects , Iron/chemistry , Manganese/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Sulfates/chemistry , Zirconium/chemistry , Humans , Microscopy, Electron, Transmission , Neoplasms/pathology , Photoelectron Spectroscopy , Tumor Cells, Cultured , X-Ray Diffraction , Zirconium/administration & dosage
...