Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Parkinsons Dis ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39058451

RESUMEN

Background: Postoperative delirium (POD) is a serious complication following deep brain stimulation (DBS) but only received little attention. Its main risk factors are higher age and preoperative cognitive deficits. These are also main risk factors for long-term cognitive decline after DBS in Parkinson's disease (PD). Objective: To identify risk factors for POD severity after DBS surgery in PD. Methods: 57 patients underwent DBS (21 female; age 60.2±8.2; disease duration 10.5±5.9 years). Preoperatively, general, PD- and surgery-specific predictors were recorded. Montreal Cognitive Assessment and the neuropsychological test battery CANTAB ConnectTM were used to test domain-specific cognition. Volumes of the cholinergic basal forebrain were calculated with voxel-based morphometry. POD severity was recorded with the delirium scales Confusion Assessment Method for Intensive Care Unit (CAM-ICU) and Nursing Delirium Scale (NU-DESC). Spearman correlations were calculated for univariate analysis of predictors and POD severity and linear regression with elastic net regularization and leave-one-out cross-validation was performed to fit a multivariable model. Results: 21 patients (36.8%) showed mainly mild courses of POD following DBS. Correlation between predicted and true POD severity was significant (spearman rho = 0.365, p = 0.001). Influential predictors were age (p < 0.001), deficits in attention and motor speed (p = 0.002), visual learning (p = 0.036) as well as working memory (p < 0.001), Nucleus basalis of Meynert volumes (p = 0.003) and burst suppression (p = 0.005). Conclusions: General but also PD- and surgery-specific factors were predictive of POD severity. These findings underline the multifaceted etiology of POD after DBS in PD. Valid predictive models must therefore consider general, PD- and surgery-specific factors.

2.
medRxiv ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38903109

RESUMEN

Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple historical targets that have been used for surgical treatment of dystonia are directly adjacent to the STN. Further, multiple types of dystonia exist, and outcomes are variable, suggesting that not all types would profit maximally from the exact same target. Therefore, a thorough investigation of the neural substrates underlying effects on dystonia symptoms is warranted. Here, we analyze a multi-center cohort of isolated dystonia patients with subthalamic implantations (N = 58) and relate their stimulation sites to improvement of appendicular and cervical symptoms as well as blepharospasm. Stimulation of the ventral oral posterior nucleus of thalamus and surrounding regions was associated with improvement in cervical dystonia, while stimulation of the dorsolateral STN was associated with improvement in limb dystonia and blepharospasm. This dissociation was also evident for structural connectivity, where the cerebellothalamic, corticospinal and pallidosubthalamic tracts were associated with improvement of cervical dystonia, while hyperdirect and subthalamopallidal pathways were associated with alleviation of limb dystonia and blepharospasm. Importantly, a single well-placed electrode may reach the three optimal target sites. On the level of functional networks, improvement of limb dystonia was correlated with connectivity to the corresponding somatotopic regions in primary motor cortex, while alleviation of cervical dystonia was correlated with connectivity to the recently described 'action-mode' network that involves supplementary motor and premotor cortex. Our findings suggest that different types of dystonia symptoms are modulated via distinct networks. Namely, appendicular dystonia and blepharospasm are improved with modulation of the basal ganglia, and, in particular, the subthalamic circuitry, including projections from the primary motor cortex. In contrast, cervical dystonia was more responsive when engaging the cerebello-thalamo-cortical circuit, including direct stimulation of ventral thalamic nuclei. These findings may inform DBS targeting and image-based programming strategies for patient-specific treatment of dystonia.

3.
Commun Biol ; 7(1): 700, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849518

RESUMEN

Thalamic aphasia results from focal thalamic lesions that cause dysfunction of remote but functionally connected cortical areas due to language network perturbation. However, specific local and network-level neural substrates of thalamic aphasia remain incompletely understood. Using lesion symptom mapping, we demonstrate that lesions in the left ventrolateral and ventral anterior thalamic nucleus are most strongly associated with aphasia in general and with impaired semantic and phonemic fluency and complex comprehension in particular. Lesion network mapping (using a normative connectome based on fMRI data from 1000 healthy individuals) reveals a Thalamic aphasia network encompassing widespread left-hemispheric cerebral connections, with Broca's area showing the strongest associations, followed by the superior and middle frontal gyri, precentral and paracingulate gyri, and globus pallidus. Our results imply the critical involvement of the left ventrolateral and left ventral anterior thalamic nuclei in engaging left frontal cortical areas, especially Broca's area, during language processing.


Asunto(s)
Afasia , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Tálamo , Núcleos Talámicos Ventrales , Humanos , Masculino , Persona de Mediana Edad , Femenino , Núcleos Talámicos Ventrales/fisiopatología , Núcleos Talámicos Ventrales/diagnóstico por imagen , Afasia/fisiopatología , Afasia/etiología , Afasia/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Tálamo/fisiopatología , Tálamo/diagnóstico por imagen , Anciano , Adulto , Conectoma , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiopatología
4.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530646

RESUMEN

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Asunto(s)
Encéfalo , Trastornos de la Motilidad Ocular , Receptores de Dopamina D2 , Transcriptoma , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Trastornos de la Motilidad Ocular/genética , Encéfalo/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Red Nerviosa/metabolismo , Anciano , Dopamina/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
5.
J Parkinsons Dis ; 14(2): 269-282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363617

RESUMEN

Background: Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective: This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods: In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results: Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions: Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Fenómenos Biomecánicos , Marcha , Pierna , Enfermedad de Parkinson/terapia , Estudios Cruzados , Método Doble Ciego
6.
Neuroimage ; 287: 120507, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244876

RESUMEN

BACKGROUND: Childhood-onset dystonia is often progressive and severely impairs a child´s life. The pathophysiology is very heterogeneous and treatment responses vary in patients with dystonia. Factors influencing treatment effects remain to be elucidated. We hypothesize that differences in brain connectivity and fiber coherence contribute to the heterogeneity in treatment response among pediatric patients with inherited and acquired dystonia. METHODS: Twenty patients with childhood-onset dystonia were retrospectively recruited including twelve patients with inherited or idiopathic, and eight patients with acquired dystonia (mean age 10 years; 8 female/12 male). Fiber density between the internal part of the globus pallidus and selective target regions, as well as the diffusion measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed and compared between different etiologies. RESULTS: Patients with acquired dystonia presented higher fiber density to the premotor cortex and putamen and lower FA values in the thalamus compared to patients with inherited/idiopathic dystonia. MD in the premotor cortex was higher in patients with acquired dystonia, while it was lower in the thalamus. CONCLUSION: Diffusion MRI reveals microstructural and network alterations in patients with dystonia of different etiologies.


Asunto(s)
Distonía , Trastornos Distónicos , Humanos , Masculino , Femenino , Niño , Imagen de Difusión Tensora/métodos , Distonía/diagnóstico por imagen , Estudios Retrospectivos , Encéfalo , Trastornos Distónicos/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Anisotropía
7.
Med Image Anal ; 91: 103041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007978

RESUMEN

Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.


Asunto(s)
Enfermedad de Alzheimer , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional , Mapeo Encefálico/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
8.
Neuro Oncol ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079480

RESUMEN

BACKGROUND: Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumour surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS: In this study, we analyzed post-operative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and paediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n=427). RESULTS: Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the paediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviours. CONCLUSIONS: Our findings indicate that CMS-associated lesions result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.

9.
Neuroimage Clin ; 39: 103449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37321142

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources. METHODS: An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort. RESULTS: We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003). CONCLUSIONS: Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Adulto , Humanos , Niño , Distonía/diagnóstico por imagen , Distonía/terapia , Reproducibilidad de los Resultados , Estimulación Encefálica Profunda/métodos , Neuroimagen/métodos , Globo Pálido/diagnóstico por imagen , Sistema de Registros , Resultado del Tratamiento
10.
Brain Commun ; 5(3): fcad105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215485

RESUMEN

Tics are sudden stereotyped movements or vocalizations. Cases of lesion-induced tics are invaluable, allowing for causal links between symptoms and brain structures. While a lesion network for tics has recently been identified, the degree to which this network translates to Tourette syndrome has not been fully elucidated. This is important given that patients with Tourette syndrome make up a large portion of tic cases; therefore, existing and future treatments should apply to these patients. The aim of this study was to first localize a causal network for tics from lesion-induced cases and then refine and validate this network in patients with Tourette syndrome. We independently performed 'lesion network mapping' using a large normative functional connectome (n = 1000) to isolate a brain network commonly connected to lesions causing tics (n = 19) identified through a systematic search. The specificity of this network to tics was assessed through comparison to lesions causing other movement disorders. Using structural brain coordinates from prior neuroimaging studies (n = 7), we then derived a neural network for Tourette syndrome. This was done using standard anatomical likelihood estimation meta-analysis and a novel method termed 'coordinate network mapping', which uses the same coordinates, yet maps their connectivity using the aforementioned functional connectome. Conjunction analysis was used to refine the network for lesion-induced tics to Tourette syndrome by identifying regions common to both lesion and structural networks. We then tested whether connectivity from this common network is abnormal in a separate resting-state functional connectivity MRI data set from idiopathic Tourette syndrome patients (n = 21) and healthy controls (n = 25). Results showed that lesions causing tics were distributed throughout the brain; however, consistent with a recent study, these were part of a common network with predominant basal ganglia connectivity. Using conjunction analysis, coordinate network mapping findings refined the lesion network to the posterior putamen, caudate nucleus, globus pallidus externus (positive connectivity) and precuneus (negative connectivity). Functional connectivity from this positive network to frontal and cingulate regions was abnormal in patients with idiopathic Tourette syndrome. These findings identify a network derived from lesion-induced and idiopathic data, providing insight into the pathophysiology of tics in Tourette syndrome. Connectivity to our cortical cluster in the precuneus offers an exciting opportunity for non-invasive brain stimulation protocols.

11.
Elife ; 122023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36727860

RESUMEN

Every decision that we make involves a conflict between exploiting our current knowledge of an action's value or exploring alternative courses of action that might lead to a better, or worse outcome. The sub-cortical nuclei that make up the basal ganglia have been proposed as a neural circuit that may contribute to resolving this explore-exploit 'dilemma'. To test this hypothesis, we examined the effects of neuromodulating the basal ganglia's output nucleus, the globus pallidus interna, in patients who had undergone deep brain stimulation (DBS) for isolated dystonia. Neuromodulation enhanced the number of exploratory choices to the lower value option in a two-armed bandit probabilistic reversal-learning task. Enhanced exploration was explained by a reduction in the rate of evidence accumulation (drift rate) in a reinforcement learning drift diffusion model. We estimated the functional connectivity profile between the stimulating DBS electrode and the rest of the brain using a normative functional connectome derived from heathy controls. Variation in the extent of neuromodulation induced exploration between patients was associated with functional connectivity from the stimulation electrode site to a distributed brain functional network. We conclude that the basal ganglia's output nucleus, the globus pallidus interna, can adaptively modify decision choice when faced with the dilemma to explore or exploit.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Humanos , Globo Pálido/fisiología , Ganglios Basales , Encéfalo
12.
Neuroimage ; 268: 119862, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610682

RESUMEN

Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
13.
Mov Disord ; 38(4): 692-697, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36718788

RESUMEN

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Corteza Motora , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estudios Retrospectivos , Núcleo Subtalámico/fisiología
14.
Parkinsonism Relat Disord ; 107: 105277, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621156

RESUMEN

BACKGROUND: Despite increased recognition of cognitive impairment in Multiple System Atrophy (MSA), its neuroanatomical correlates are not well defined. We aimed to explore cognitive profiles in MSA with predominant parkinsonism (MSA-P) and Parkinson's disease (PD) and their relationship to frontostriatal structural and metabolic changes. METHODS: Detailed clinical and neuropsychological evaluation was performed together with diffusion tensor imaging (DTI) and [18F]-fluoro-deoxyglucose positron emission tomography ([18F]-FDG-PET) in patients with MSA-P (n = 11) and PD (n = 11). We compared clinical and neuropsychological data to healthy controls (n = 9) and correlated neuropsychological data with imaging findings in MSA-P and PD. RESULTS: Patients with MSA-P showed deficits in executive function (Trail Making Test B-A) and scored higher in measures of depression and anxiety compared to those with PD and healthy controls. Widespread frontostriatal white matter tract reduction in fractional anisotropy was seen in MSA-P and PD compared to an imaging control group. Stroop Test interference performance correlated with [18F]-FDG uptake in the bilateral dorsolateral prefrontal cortex (DLPFC) and with white matter integrity between the striatum and left inferior frontal gyrus (IFG) in PD. Trail Making Test performance correlated with corticostriatal white matter integrity along tracts from the bilateral IFG in MSA-P and from the right DLPFC in both groups. CONCLUSION: Executive dysfunction was more prominent in patients with MSA-P compared to PD. DLPFC metabolism and frontostriatal white matter integrity seem to be a driver of executive function in PD, whereas alterations in corticostriatal white matter integrity may contribute more to executive dysfunction in MSA-P.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Imagen de Difusión Tensora , Fluorodesoxiglucosa F18 , Pruebas Neuropsicológicas
16.
Exp Neurol ; 356: 114150, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35732220

RESUMEN

Current efforts to optimise subthalamic deep brain stimulation in Parkinson's disease patients aim to harness local oscillatory activity in the beta frequency range (13-35 Hz) as a feedback-signal for demand-based adaptive stimulation paradigms. A high prevalence of beta peak activity is prerequisite for this approach to become routine clinical practice. In a large dataset of postoperative rest recordings from 106 patients we quantified occurrence and identified determinants of spectral peaks in the alpha, low and high beta bands. At least one peak in beta band occurred in 92% of patients and 84% of hemispheres off medication, irrespective of demographic parameters, clinical subtype or motor symptom severity. Distance to previously described clinical sweet spot was significantly related both to beta peak occurrence and to spectral power (rho -0.21, p 0.006), particularly in the high beta band. Electrophysiological landscapes of our cohort's dataset in normalised space showed divergent heatmaps for alpha and beta but found similar regions for low and high beta frequency bands. We discuss potential ramifications for clinicians' programming decisions. In summary, this report provides robust evidence that spectral peaks in beta frequency range can be detected in the vast majority of Parkinsonian subthalamic nuclei, increasing confidence in the broad applicability of beta-guided deep brain stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Ritmo beta/fisiología , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
17.
Exp Neurol ; 355: 114135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679961

RESUMEN

BACKGROUND: Gait disturbances are frequent side effects related to chronic thalamic deep brain stimulation (DBS) that may persist beyond cessation of stimulation. OBJECTIVE: We investigate the temporal dynamics and clinical effects of an overnight unilateral withdrawal of DBS on gait disturbances. METHODS: 10 essential tremor (ET) patients with gait disturbances following thalamic DBS underwent clinical and kinematic gait assessment ON DBS, after instant and after an overnight unilateral withdrawal of DBS of the hemisphere corresponding to the non-dominant hand. The effect of stimulation withdrawal on gait performance was quantitatively assessed using clinical rating and inertial sensors and compared to gait kinematics from 10 additional patients with ET but without subjective gait impairment. DBS leads were reconstructed and active contacts were visualized in relation to surrounding axonal pathways and nuclei. RESULTS: Patients with gait deterioration following DBS exhibited greater excursion of sagittal trunk movements and greater variability of stride length and shank range of motion compared to ET patients without DBS and without subjective gait impairment. Overnight but not instant unilateral withdrawal of DBS resulted in significant reduction of SARA axial subscore and stride length variability, while tremor control of the dominant hand was preserved. Cerebellothalamic, striatopallidofugal and corticospinal fibers were in direct vicinity of transiently deactivated contacts. CONCLUSION: Non-dominant unilateral cessation of VIM DBS may serve as a therapeutic option as well as a diagnostic intervention to identify stimulation-induced gait disturbances that is applicable in ambulatory settings due to preserved functionality of the dominant hand.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Trastornos Neurológicos de la Marcha , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Marcha , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Tálamo , Núcleos Talámicos Ventrales
19.
NPJ Parkinsons Dis ; 8(1): 44, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440571

RESUMEN

Adaptive deep brain stimulation (aDBS) is a promising concept for feedback-based neurostimulation, with the potential of clinical implementation with the sensing-enabled Percept neurostimulator. We aim to characterize chronic electrophysiological activity during stimulation and to validate beta-band activity as a biomarker for bradykinesia. Subthalamic activity was recorded during stepwise stimulation amplitude increase OFF medication in 10 Parkinson's patients during rest and finger tapping. Offline analysis of wavelet-transformed beta-band activity and assessment of inter-variable relationships in linear mixed effects models were implemented. There was a stepwise suppression of low-beta activity with increasing stimulation intensity (p = 0.002). Low-beta power was negatively correlated with movement speed and predictive for velocity improvements (p < 0.001), stimulation amplitude for beta suppression (p < 0.001). Here, we characterize beta-band modulation as a chronic biomarker for motor performance. Our investigations support the use of electrophysiology in therapy optimization, providing evidence for the use of biomarker analysis for clinical aDBS.

20.
Proc Natl Acad Sci U S A ; 119(14): e2114985119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357970

RESUMEN

Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Distónicos , Tortícolis , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/terapia , Globo Pálido , Humanos , Tálamo , Tortícolis/terapia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA