Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21802, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045201

RESUMEN

Ammonia is one of the most produced chemicals around the world due to its various uses. However its traditional production process is associated with high fossil fuel consumption. To avoid this, the production of green ammonia can be done, and one of the considered production methods is water electrolysis, where the hydrogen needed for the manufacturing of ammonia is produced using solar energy. In this work, multi-objective optimization (MOO) is carried out for two ammonia synthesis processes with water electrolysis. One process uses solar energy to generate electricity for the whole process (Green ammonia), while the other uses natural gas for the same purpose (non-green ammonia) on a small production scale. The process is simulated using ProMax 5.0 and MOO is done using Excel-based MOO with I-MODE algorithm. Several MOO cases are solved with different objectives like CO2 emissions and energy (ENG) minimization, and Profit and Purity maximization in two and three objective cases. To conduct the work, several decision variables are selected like the operating temperatures and pressures of different streams in addition to the flow rate of nitrogen and water. Some constraints regarding the purity and reactors temperature are considered as well. The obtained results showed that the profit of green ammonia process (ranges between 0.7 and 80 M$/yr) is lower compared to the non-green process (ranges between 0.8 and 4.4 M$/yr). On the other hand, huge CO2 emissions (up to 38000 tons/yr) are produced in the non-green process compared to almost zero emissions with the green process. In most cases, water and nitrogen flow rates showed a high influence on the results and caused conflict between the objectives.

2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499359

RESUMEN

Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.


Asunto(s)
Medicina , Nanoestructuras , Electrólitos , Oxidación-Reducción , Tomografía de Emisión de Positrones
3.
Nanoscale Adv ; 4(23): 5044-5055, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504739

RESUMEN

Metal nanocrystal ornamented metal-organic frameworks (MOFs) are of particular interest in multidisciplinary applications; however, their electrocatalytic CO oxidation performance over wide pH ranges is not yet reported. Herein, Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) with abundant Ni-N x sites decorated with Pd nanocrystals (Pd/Ni-MOF/PC) were synthesized by microwave-irradiation (MW-I) followed by annealing at 900 °C and subsequent etching of Ni-MOF/C prior to Pd deposition. The fabrication mechanism comprises the generation of self-reduced reducing gases from triethylamine during the annealing and selective chemical etching of Ni, thereby facilitating the reduction of Ni-anchored MOF and Pd nanocrystal deposition with the aid of ethylene glycol and MW-I to yield Pd/Ni-N x enriched MOF/PC. The synthetic strategies endear the Pd/Ni-MOF/PC with unique physicochemical merits: abundant defects, interconnected pores, high electrical conductivity, high surface area, Ni-deficient but more active sites for Pd/Ni-N x in porous carbon nanosheets, and synergism. These merits endowed the CO oxidation activity and stability on Pd/Ni-MOF/PC substantially than those of Pd/Ni-MOF/C and Pd/C catalysts in wide pH conditions (i.e., KOH, HClO4, and NaHCO3). The CO oxidation activity study reveals the utilization of MOF/PC with metal nanocrystals (Pd/Ni) in CO oxidation catalysis.

4.
Chemosphere ; 308(Pt 3): 136357, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084820

RESUMEN

Membrane-based natural gas liquid (NGL) recovery processes are still far from their large-scale applications owing to communication gaps among academic researchers and industry practitioners. A comprehensive process systems engineering (PSE) assessment of membrane-based NGL recovery processes is required to determine their commercial suitability. This PSE-based review presents the technical and economic aspects of standalone and integrated membrane processes. Literature review shows that polymeric membranes (e.g., cellulose acetate) are primarily evaluated in NGL recovery processes despite their low separation efficiencies. So far, multiple multistage membrane models with standalone and integrated designs have been suggested by analyzing different configurations to improve separation efficiency. In standalone processes, cellulose acetate membrane modules with high selectivity ratio can improve methane recovery by up to 100%. Absorption or cryogenic integrated processes exhibit high methane recovery (up to 99%) but demonstrate high energy consumption. The integrated absorption-membrane process is more capital cost intensive (i.e., 0.41 m$) than the cryogenic-membrane process (0.39 m$). Furthermore, in this review, the key challenges encountered by membrane processes and related issues are identified to improve their commercial viability by capitalizing on their maximum potential benefits. The major challenges associated with membrane processes constitute the lack of rigorous multistage membrane models and inflexibility in product purity and recovery. The policy implications and future directions suggest that owing to the growing demand for NGLs, membranes that can sustain varying natural gas compositions and conditions may be required. This PSE assessment will help process engineers and policymakers to improve natural gas supply chain economics.


Asunto(s)
Metano , Gas Natural
6.
Chem Commun (Camb) ; 46(23): 4088-90, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20390211

RESUMEN

The efficient one-step conversion of n-butanol to iso-butene over zeolite catalysts by combined dehydration and isomerisation has been demonstrated. The medium pore-size unidirectional channel zeolites Theta-1 and ZSM-23 show high conversion and stable selectivity to iso-butene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...