Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 9(5): 2464-2471, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751971

RESUMEN

Interfacial structural and chemical evolution underpins safety, energy density, and lifetime in batteries and other electrochemical systems. During lithium electrodeposition, local nonequilibrium conditions can arise that promote heterogeneous lithium morphologies but are challenging to directly study, particularly at the nanoscale. Here we map chemical microenvironments at the active copper/electrolyte interface during lithium electrodeposition, presenting operando freezing cryogenic electron microscopy (cryo-EM), a new method, to lock in structures arising in coin cells. We find local ion depletion is correlated with lithium whiskers but not planar lithium, and we hypothesize that depletion stems from root-growing whiskers consuming ions at the growth interface while also restricting ion transport through local electrolyte. This can allow dangerous lithium morphologies to propagate, even in concentrated electrolytes, as ion depletion favors dendritic growth. Operando freezing cryo-EM thus reveals local microenvironments at active electrochemical interfaces to enable direct investigation of site-specific, nonequilibrium conditions that arise during operation of energy devices.

3.
ACS Appl Mater Interfaces ; 15(17): 20909-20916, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37071499

RESUMEN

Light-induced performance changes in metal halide perovskite solar cells (PSCs) have been studied intensively over the last decade, but little is known about the variation in microscopic optoelectronic properties of the perovskite heterojunctions in a completed device during operation. Here, we combine Kelvin probe force microscopy and transient reflection spectroscopy techniques to spatially resolve the evolution of junction properties during the operation of metal-halide PSCs and study the light-soaking effect. Our analysis showed a rise of an electric field at the hole-transport layer side, convoluted with a more reduced interfacial recombination rate at the electron-transport layer side in the PSCs with an n-i-p structure. The junction evolution is attributed to the effects of ion migration and self-poling by built-in voltage. Device performances are correlated with the changes of electrostatic potential distribution and interfacial carrier dynamics. Our results demonstrate a new route for studying the complex operation mechanism in PSCs.

4.
ACS Appl Mater Interfaces ; 14(35): 39976-39984, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36000715

RESUMEN

Solar cells are essentially minority carrier devices, and it is therefore of central importance to understand the pertinent carrier transport processes. Here, we advanced a transport imaging technique to directly visualize the charge motion and collection in the direction of relevant carrier transport and to understand the cell operation and degradation in state-of-the-art cadmium telluride solar cells. We revealed complex carrier transport profiles in the inhomogeneous polycrystalline thin-film solar cell, with the influence of electric junction, interface, recombination, and material composition. The pristine cell showed a unique dual peak in the carrier transport light intensity decay profile, and the dual peak feature disappeared on a degraded cell after light and heat stressing in the lab. The experiments, together with device modeling, suggested that selenium diffusion plays an important role in carrier transport. The work opens a new forum by which to understand the carrier transport and bridge the gap between atomic/nanometer-scale chemical/structural and submicrometer optoelectronic knowledge.

5.
ACS Appl Mater Interfaces ; 12(50): 55737-55745, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33259180

RESUMEN

High-efficiency silicon solar cells rely on some form of passivating contact structure to reduce recombination losses at the crystalline silicon surface and losses at the metal/Si contact interface. One such structure is polycrystalline silicon (poly-Si) on oxide, where heavily doped poly-Si is deposited on a SiOx layer grown directly on the crystalline silicon (c-Si) wafer. Depending on the thickness of the SiOx layer, the charge carriers can cross this layer by tunneling (<2 nm SiOx thickness) or by direct conduction through disruptions in the SiOx, often referred to as pinholes, in thicker SiOx layers (>2 nm). In this work, we study structures with tunneling- or pinhole-like SiOx contacts grown on pyramidally textured c-Si wafers and expose variations in the SiOx layer properties related to surface morphology using electron-beam-induced current (EBIC) imaging. Using EBIC, we identify and mark regions with potential pinholes in the SiOx layer. We further perform high-resolution transmission electron microscopy on the same areas, thus allowing us to directly correlate locally enhanced carrier collection with variations in the structure of the SiOx layer. Our results show that the pinholes in the SiOx layer preferentially form in different locations based on the annealing conditions used to form the device. With greater understanding of these processes and by controlling the surface texture geometry, there is potential to control the size and spatial distribution of oxide disruptions in silicon solar cells with poly-Si on oxide-type contacts; usually, this is a random phenomenon on polished or planar surfaces. Such control will enable us to consistently produce high-efficiency devices with low recombination currents and low junction resistances using this contact structure.

6.
Nano Lett ; 20(11): 8081-8088, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125240

RESUMEN

Nanoparticle silicon-graphite composite electrodes are a viable way to advance the cycle life and energy density of lithium-ion batteries. However, characterization of composite electrode architectures is complicated by the heterogeneous mixture of electrode components and nanoscale diameter of particles, which falls beneath the lateral and depth resolution of most laboratory-based instruments. In this work, we report an original laboratory-based scanning probe microscopy approach to investigate composite electrode microstructures with nanometer-scale resolution via contrast in the electronic properties of electrode components. Applying this technique to silicon-based composite anodes demonstrates that graphite, SiOx nanoparticles, carbon black, and LiPAA binder are all readily distinguished by their intrinsic electronic properties, with measured electronic resistivity closely matching their known material properties. Resolution is demonstrated by identification of individual nanoparticles as small as ∼20 nm. This technique presents future utility in multiscale characterization to better understand particle dispersion, localized lithiation, and degradation processes in composite electrodes for lithium-ion batteries.

7.
ACS Nano ; 14(6): 7444-7453, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32401484

RESUMEN

Organic-inorganic (O-I) heterostructures, consisting of atomically thin inorganic semiconductors and organic molecules, present synergistic and enhanced optoelectronic properties with a high tunability. Here, we develop a class of air-stable vertical O-I heterostructures comprising a monolayer of transition-metal dichalcogenides (TMDs), including WS2, WSe2, and MoSe2, on top of tetraphenylethylene (TPE) core-based aggregation-induced emission (AIE) molecular rotors. The created O-I heterostructures yields a photoluminescence (PL) enhancement of up to ∼950%, ∼500%, and ∼330% in the top monolayer WS2, MoSe2, and WSe2 as compared to PL in their pristine monolayers, respectively. The strong PL enhancement is mainly attributed to the efficient photogenerated carrier process in the AIE luminogens (courtesy of their restricted intermolecular motions in the solid state) and the charge-transfer process in the created type I O-I heterostructures. Moreover, we observe an improvement in photovoltaic properties of the TMDs in the heterostructures including the quasi-Fermi level splitting, minority carrier lifetime, and light absorption. This work presents an inspiring example of combining stable, highly luminescent AIE-based molecules, with rich photochemistry and versatile applications, with atomically thin inorganic semiconductors for multifunctional and efficient optoelectronic devices.

8.
ACS Appl Mater Interfaces ; 12(2): 3150-3160, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31820906

RESUMEN

Photovoltaic devices based on Cu(In,Ga)Se2 (CIGS) typically employ polycrystalline thin films as the absorber layer. This is because, to date, the highest conversion efficiencies have been attained with polycrystalline CIGS films. Recently, Nishinaga et al. presented an epitaxial CIGS thin-film solar cell grown on a GaAs (100) substrate with a conversion efficiency of 20.0%. In this contribution, we study the optical and structural properties of this high-efficiency epitaxial film, along with others with different compositions using cathodoluminescence spectrum imaging and transmission electron microscopy. A comparison of the high-efficiency epitaxial film and a traditional polycrystalline film with a similar global composition reveals significant differences in microstructure and uniformity of emission properties despite similar performance. The analysis of epitaxial films with a higher gallium concentration indicates that the emission characteristics and nature of extended defects in epitaxial CIGS films are strongly dependent on the gallium content. The results presented here provide evidence that, with further optimization, photovoltaic conversion efficiencies of epitaxial CIGS films could exceed those of polycrystalline CIGS.

9.
ACS Appl Mater Interfaces ; 11(45): 42021-42031, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31610646

RESUMEN

High-efficiency crystalline silicon (Si) solar cells require textured surfaces for efficient light trapping. However, passivation of a textured surface to reduce carrier recombination is difficult. Here, we relate the electrical properties of cells fabricated on a KOH-etched, random pyramidal-textured Si surface to the nanostructure of the passivated contact and the textured surface morphology. The effects of both microscopic pyramidal morphology and nanoscale surface roughness on passivated contacts consisting of polycrystalline Si (poly-Si) deposited on top of an ultrathin, 1.5-2.2 nm, SiOx layer are investigated. Using atomic force microscopy, we show a pyramid face, which is predominantly a Si(111) plane to be significantly rougher than a polished Si(111) surface. This roughness results in a nonuniform SiOx layer as determined by transmission electron microscopy of a poly-Si/SiOx contact. Our device measurements also show an overall more resistive and hence a thicker SiOx layer over the pyramidal surface as compared to a polished Si(111) surface, which we relate to increased surface roughness. Using electron-beam-induced current measurements of poly-Si/SiOx contacts, we further show that the SiOx layer near the pyramid valleys is preferentially more conducting and hence likely thinner than over pyramid tips, edges, and faces. Hence, both the microscopic pyramidal morphology and nanoscale roughness lead to a nonuniform SiOx layer, thus leading to poor poly-Si/SiOx contact passivation. Finally, we report >21% efficient and ≥80% fill-factor front/back poly-Si/SiOx solar cells on both single-side and double-side textured wafers without the use of transparent conductive oxide layers, and show that the poorer contact passivation on a textured surface is limited to boron-doped poly-Si/SiOx contacts.

10.
Microsc Microanal ; 25(5): 1160-1166, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475657

RESUMEN

Single-crystalline gallium arsenide (GaAs) grown by various techniques can exhibit hillock defects on the surface when sub-optimal growth conditions are employed. The defects act as nonradiative recombination centers and limit solar cell performance. In this paper, we applied near-field transport imaging to study hillock defects in a GaAs thin film. On the same defects, we also performed near-field cathodoluminescence, standard cathodoluminescence, electron-backscattered diffraction, transmission electron microscopy, and energy-dispersive X-ray spectrometry. We found that the luminescence intensity around the hillock area is two orders of magnitude lower than on the area without hillock defects in the millimeter region, and the excess carrier diffusion length is degraded by at least a factor of five with significant local variation. The optical and transport properties are affected over a significantly larger region than the observed topography and crystallographic and chemical compositions associated with the defect.

11.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459840

RESUMEN

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

12.
ACS Appl Mater Interfaces ; 11(28): 25115-25122, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31264402

RESUMEN

Catalytic MoSx thin films have been directly photoelectrodeposited on GaInP2 photocathodes for stable photoelectrochemical hydrogen generation. Specifically, the MoSx deposition conditions were controlled to obtain 8-10 nm films directly on p-GaInP2 substrates without ancillary protective layers. The films were nominally composed of MoS2, with additional MoOxSy and MoO3 species detected and showed no long-range crystalline order. The as-deposited material showed excellent catalytic activity toward the hydrogen evolution reaction relative to bare p-GaInP2. Notably, no appreciable photocurrent reduction was incurred by the addition of the photoelectrodeposited MoSx catalyst to the GaInP2 photocathode under light-limited operating conditions, highlighting the advantageous optical properties of the film. The MoSx catalyst also imparted enhanced durability toward photoelectrochemical hydrogen evolution in acidic conditions, maintaining nearly 85% of the initial photocurrent after 50 h of electrolysis. In total, this work demonstrates a simple method for producing dual-function catalyst/protective layers directly on high-performance, planar III-V photoelectrodes for photoelectrochemical energy conversion.

13.
Science ; 364(6439): 475-479, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31000592

RESUMEN

All-perovskite-based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite-based tandem devices has been limited by the lack of high-efficiency, low-band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low-band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low-band gap PSCs. When combined with wider-band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite-based polycrystalline thin-film tandem solar cells.

14.
Sci Rep ; 8(1): 14519, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266958

RESUMEN

Thin film materials for photovoltaics such as cadmium telluride (CdTe), copper-indium diselenide-based chalcopyrites (CIGS), and lead iodide-based perovskites offer the potential of lower solar module capital costs and improved performance to microcrystalline silicon. However, for decades understanding and controlling hole and electron concentration in these polycrystalline films has been extremely challenging and limiting. Ionic bonding between constituent atoms often leads to tenacious intrinsic compensating defect chemistries that are difficult to control. Device modeling indicates that increasing CdTe hole density while retaining carrier lifetimes of several nanoseconds can increase solar cell efficiency to 25%. This paper describes in-situ Sb, As, and P doping and post-growth annealing that increases hole density from historic 1014 limits to 1016-1017 cm-3 levels without compromising lifetime in thin polycrystalline CdTe films, which opens paths to advance solar performance and achieve costs below conventional electricity sources.

15.
ACS Appl Mater Interfaces ; 9(44): 38373-38380, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29027466

RESUMEN

Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO2-based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO2 (FTO)-coated glass; (2) cells with an intrinsic SnO2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO2-ESL < SnO2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (Voc). The improvement of the FF from the FTO to SnO2-ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of Voc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.

16.
Sci Rep ; 7(1): 14163, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29074885

RESUMEN

The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10's of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximum (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga)Cu and VSe, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.

17.
Adv Sci (Weinh) ; 3(6): 1500320, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27812470

RESUMEN

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Se x , is reported, which shows a high abundance of secondary phases compared to similarly grown Cu2ZnSnSe4.

18.
Adv Mater ; 28(26): 5214-21, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27145346

RESUMEN

Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

19.
Nat Commun ; 6: 8397, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26411597

RESUMEN

Organometal-halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells-which are the fundamental mechanisms of device operation and critical factors for power output-by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p-n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.

20.
Phys Rev Lett ; 112(15): 156103, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785058

RESUMEN

When CdTe solar cells are doped with Cl, the grain boundaries no longer act as recombination centers but actively contribute to carrier collection efficiency. The physical origin of this remarkable effect has been determined through a combination of aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles theory. Cl substitutes for a large proportion of the Te atoms within a few unit cells of the grain boundaries. Density functional calculations reveal the mechanism, and further indicate the grain boundaries are inverted to n type, establishing local p-n junctions which assist electron-hole pair separation. The mechanism is electrostatic, and hence independent of the geometry of the boundary, thereby explaining the universally high collection efficiency of Cl-doped CdTe solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...