Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 9(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976115

RESUMEN

Automated deep learning is promising in artificial intelligence (AI). However, a few applications of automated deep learning networks have been made in the clinical medical fields. Therefore, we studied the application of an open-source automated deep learning framework, Autokeras, for detecting smear blood images infected with malaria parasites. Autokeras is able to identify the optimal neural network to perform the classification task. Hence, the robustness of the adopted model is due to it not needing any prior knowledge from deep learning. In contrast, the traditional deep neural network methods still require more construction to identify the best convolutional neural network (CNN). The dataset used in this study consisted of 27,558 blood smear images. A comparative process proved the superiority of our proposed approach over other traditional neural networks. The evaluation results of our proposed model achieved high efficiency with impressive accuracy, reaching 95.6% when compared with previous competitive models.

2.
J Biomol Struct Dyn ; 29(1): 1-26, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696223

RESUMEN

The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.


Asunto(s)
Biología Computacional/métodos , ARN/química , Programas Informáticos , Algoritmos , Emparejamiento Base , Secuencia de Bases , Conformación de Ácido Nucleico , Termodinámica
3.
Evol Bioinform Online ; 6: 27-45, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20458364

RESUMEN

RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA