Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 348: 122688, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710284

RESUMEN

Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1ß, MCP-1, JNK1, and TGF-ß in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.


Asunto(s)
Cadmio , Cardiotoxicidad , Inflamasomas , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Ubiquinona , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Estrés Oxidativo/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Cadmio/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Antioxidantes/farmacología
2.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714237

RESUMEN

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas Hedgehog , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Masculino , Humanos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Células Hep G2 , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Quimioterapia Combinada , Ratas , Ratas Sprague-Dawley , Colesterol/metabolismo
3.
Pathol Res Pract ; 256: 155237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492358

RESUMEN

A serious consequence of diabetes mellitus, diabetic nephropathy (DN) which causes gradual damage to the kidneys. Dietary changes, blood pressure control, glucose control, and hyperlipidemia are all important components of DN management. New research, however, points to microRNAs (miRNAs) as having a pivotal role in DN pathogenesis. Miniature non-coding RNA molecules such as miRNAs control gene expression and impact several biological processes. The canonical and non-canonical routes of miRNA biogenesis are discussed in this article. In addition, several important signaling pathways are examined in the study of miRNA regulation in DN. A deeper knowledge of these regulatory mechanisms would allow for a better understanding of the molecular basis of DN and the development of innovative therapeutic strategies. Finally, miRNAs show tremendous potential as DN diagnostic biomarkers and treatment targets, opening up promising avenues for further study and potential clinical use.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo , Transducción de Señal/genética
4.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38354025

RESUMEN

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de la Dipeptidil-Peptidasa IV , Neoplasias Hepáticas , Animales , Ratas , Linagliptina/farmacología , Proteínas Quinasas Activadas por AMP , Dietilnitrosamina/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Hipoglucemiantes , Inhibidores de Proteasas , Antivirales , Antiinflamatorios
5.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176308

RESUMEN

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proteínas Hedgehog/genética , Itraconazol/farmacología , Itraconazol/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Vía de Señalización Wnt
6.
Pathol Res Pract ; 254: 155147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246033

RESUMEN

Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Epigénesis Genética , Calidad de Vida , Asma/diagnóstico , Asma/genética , Asma/tratamiento farmacológico , Biomarcadores
7.
Pathol Res Pract ; 254: 155146, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266457

RESUMEN

Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.


Asunto(s)
Epilepsia , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/metabolismo , Convulsiones/metabolismo , Neuronas/patología , Autofagia
8.
Pathol Res Pract ; 253: 155007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061270

RESUMEN

Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Humanos , Anciano , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , ARN Mensajero , Biomarcadores/metabolismo
9.
Pathol Res Pract ; 253: 155027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101159

RESUMEN

Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Humanos , MicroARNs/metabolismo , Carcinogénesis/genética , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Oncogenes , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Transición Epitelial-Mesenquimal/genética
10.
Pathol Res Pract ; 253: 155054, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142525

RESUMEN

Asthma is a chronic non-communicable respiratory disease that is characterized by airway inflammation and hyperreactivity. Defective functions of airway smooth muscle and dysregulated signaling pathways play a crucial role in the pathogenesis of asthma. Anti-inflammatories and targeted therapy are mainly used for the treatment of asthma. Recent studies have investigated the role of non-coding RNAs, especially microRNAs (miRNAs; miR) in regulating gene expression and their involvement in the dysfunctional signaling pathways. In immune-mediated diseases, including asthma, miRNAs govern the actions of cells that form the airway structure and those responsible for the defense mechanisms in the bronchi and lungs. miRNAs control cell survival, proliferation, and growth, as well as the cells' capacity to produce and release chemokines and immune mediators. Moreover, miRNAs have an important role in the response to therapeutic interventions. Collectively, this review highlights the regulatory roles of miRNAs in modulating the different signaling pathways and therapeutic responses in asthma. Patients who suffer from asthma, particularly those with severe disease characteristics, may benefit from the prospective treatment options that include targeting miRNAs in order to reduce airway inflammation, hyperreactivity, and mucus production.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/metabolismo , Asma/terapia , Asma/tratamiento farmacológico , Pulmón/patología , Bronquios/patología , Inflamación/genética
11.
Pathol Res Pract ; 252: 154947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977032

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/ß-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , MicroARNs , Neoplasias Pleurales , Humanos , MicroARNs/genética , Mesotelioma/diagnóstico , Neoplasias Pleurales/patología , Proteínas Hedgehog , Neoplasias Pulmonares/patología , Transducción de Señal/genética
12.
Pathol Res Pract ; 251: 154855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806169

RESUMEN

Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Biomarcadores , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas
13.
Pathol Res Pract ; 250: 154817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37713736

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.

14.
Pathol Res Pract ; 249: 154771, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611429

RESUMEN

Merkel cell carcinoma (MCC) is an uncommon invasive form of skin cancer that typically manifests as a nodule on the face, head, or neck that is flesh-colored or bluish-red in appearance. Rapid growth and metastasis are hallmarks of MCC. MCC has the second-greatest mortality rate among skin cancers after melanoma. Despite the recent cascade of molecular investigations, no universal molecular signature has been identified as responsible for MCC's pathogenesis. The microRNAs (miRNAs) play a critical role in the post-transcriptional regulation of gene expression. Variations in the expression of these short, non-coding RNAs have been associated with various malignancies, including MCC. Although the incidence of MCC is very low, a significant amount of study has focused on the interaction of miRNAs in MCC. As such, the current survey is a speedy intensive route revealing the potential involvement of miRNAs in the pathogenesis of MCC beyond their association with survival in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Melanoma/genética
15.
Pathol Res Pract ; 249: 154763, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595447

RESUMEN

Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.


Asunto(s)
Carcinoma de Células de Merkel , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/diagnóstico , Carcinoma de Células de Merkel/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética
16.
Pathol Res Pract ; 248: 154690, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37473498

RESUMEN

Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/patología , Pronóstico , Transducción de Señal/genética
17.
Pathol Res Pract ; 248: 154665, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37418996

RESUMEN

Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/diagnóstico , Carcinoma Corticosuprarrenal/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/diagnóstico , Neoplasias de la Corteza Suprarrenal/genética , Pronóstico , Resistencia a Medicamentos
18.
Pathol Res Pract ; 245: 154438, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37043965

RESUMEN

Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.


Asunto(s)
Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Pronóstico , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas
19.
Life Sci ; 303: 120675, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640776

RESUMEN

AIMS: The first-line treatment for advanced hepatocellular carcinoma (HCC) is the multikinase inhibitor sorafenib (SOR). Sofafenib resistance is linked to protein kinase B/ mammalian target of rapamycin (AKT/mTOR) and nuclear factor kappa B (NF-κB) activation, apoptosis inhibition and oxidative stress. This study investigated selenium nanoparticles (SeNps) to overcome SOR resistance in thioacetamide (TAA) induced HCC in rats. MATERIALS AND METHODS: TAA (200 mg/kg/twice weekly, i.p.) was administered for 16 weeks to induce HCC.s. Rats were treated with oral SOR (10 mg/Kg daily), selenium, and SeNps (5 mg/kg three times/week) alone or in combination, for two weeks. Apoptosis, proliferation, angiogenesis, metastasis and drug resistance were assessed. Cleaved caspase 3 (C. CASP3), mTOR, and NF-κB were determined by western blotting. Expression of p53 gene and long-noncoding RNA-AF085935 was determined by qRT-PCR. Expression of B- Cell Leukemia/Lymphoma 2 (Bcl2), Bcl associated X protein (Bax)and glypican 3 (GPC3) was determined by enzyme-linked immunosorbent assay. Liver functions, antioxidant capacity, histopathology and CD34 immunohistochemistry were performed. KEY FINDINGS: SOR/SeNps reversed TAA-induced HCC in rats, through reduction of oxidative stress, activation of p53, Bax and CASP3, and inhibition of Bcl2. SOR/SeNps ameliorated the HCC-induced effect on cell proliferation and drug resistance by targeting mTOR and NF-κB pathways. SOR/SeNps decreased CD34 immunostaining indicating a decrease in angiogenesis and metastasis. SOR/SeNps regulated HCC epigenetically through the lncRNA-AF085935/GPC3 axis. SIGNIFICANCE: SOR/SeNps are a promising combination for tumor suppression and overcoming sorafenib resistance in HCC by modulating apoptosis, AKT/mTOR and NF-κB pathways, as well as CD34 and lncRNA-AF085935/GPC3 axis.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , ARN Largo no Codificante , Selenio , Animales , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspasa 3 , Línea Celular Tumoral , Glipicanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , FN-kappa B , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Ratas , Selenio/farmacología , Sorafenib , Serina-Treonina Quinasas TOR/metabolismo , Tioacetamida , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...