Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2655: 79-89, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212990

RESUMEN

Site-directed mutagenesis (SDM) is a technique in molecular biology and protein engineering that is widely used to determine the significance of specific residues involved in post-translational modifications (PTMs), protein structure, function, and stability. Here, we describe a simple and cost-effective polymerase chain reaction (PCR)-based SDM method. This method can be used to introduce point mutation, short addition, or deletions in protein sequences. Using polycomb repressive complex-2 (PRC2)-associated protein JARID2 as an example, we demonstrate how SDM can be used to study structural and consequently functional changes in a protein.


Asunto(s)
Aminoácidos , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Aminoácidos/genética , Complejo Represivo Polycomb 2/genética , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa
2.
Elife ; 102021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821549

RESUMEN

Human serum albumin (HSA) is the frontline antioxidant protein in blood with established anti-inflammatory and anticoagulation functions. Here, we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1-35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance spectra of spin-labeled fatty acids (SLFAs) bound with HSA in whole blood of control, survivor, and non-survivor subjects (n=10-11). Non-survivors' HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weak-binding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA, we show that the transport function of HSA may be impaired in severe patients. Stratified at the means, Kaplan-Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 µM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (<0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), log-rank χ2=12.1, p=4.9×10-4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.


Asunto(s)
COVID-19/mortalidad , Neutrófilos/fisiología , Estrés Oxidativo , Albúmina Sérica/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Egipto/epidemiología , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Peróxido de Hidrógeno/sangre , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Tiempo
3.
BMC Res Notes ; 13(1): 501, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126912

RESUMEN

OBJECTIVE: JARID2 is a member of chromatin-modifying Polycomb Repressive Complex-2 or PRC2. It plays a role in recruiting PRC2 to developmental genes and regulating its activity. JARID2 along with PRC2 is indispensable for normal development. However, it remains unclear how JARID2 expression itself is regulated. Recently a number of non-protein-coding RNAs or ncRNAs are shown to regulate transcription. An antisense ncRNA, JARID2-AS1, is expressed from the first intron of JARID2 isoform-1 but its role in regulation of JARID2 expression has not been investigated. The objective of this study was to explore the role of JARID2-AS1 in regulating JARID2 and consequently PRC2. RESULTS: We found that JARID2-AS1 is localised in the nucleus and shows anti-correlated expression pattern to that of JARID2 isoform-1 mRNA. More interestingly, data mining approach strongly indicates that JARID2-AS1 binds to PRC2. These are important observations that provide insights into transcriptional regulation of JARID2, especially because they indicate that JARID2-AS1 by interacting and probably recruiting PRC2 participates in an auto-regulatory loop that controls levels of JARID2. This holds importance in regulation of developmental and differentiation processes. However, to support this hypothesis, further in-depth studies are needed which can verify JARID2-AS1-PRC2 interactions.


Asunto(s)
Complejo Represivo Polycomb 2/genética , ARN no Traducido , Diferenciación Celular , Línea Celular Tumoral , Regulación de la Expresión Génica , Homeostasis , Humanos , Complejo Represivo Polycomb 2/metabolismo , ARN sin Sentido
4.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573669

RESUMEN

Polycomb repressive complex-2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone-modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co-factor of PRC2 and is important for targeting PRC2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage-committed human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N-terminal PRC2-interacting domain (ΔN-JARID2). We show that ΔN-JARID2 is a cleaved product of full-length JARID2 spanning the C-terminal conserved jumonji domains. JARID2 knockout in keratinocytes results in up-regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2-null keratinocytes can be rescued by expression of ΔN-JARID2 suggesting that, in contrast to PRC2, ΔN-JARID2 promotes activation of differentiation genes. We propose that a switch from expression of full-length JARID2 to ΔN-JARID2 is important for the up-regulation differentiation genes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Queratinocitos/citología , Complejo Represivo Polycomb 2/metabolismo , Sistemas CRISPR-Cas , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Queratinocitos/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/genética , Unión Proteica , Isoformas de Proteínas
5.
J Adv Res ; 5(5): 525-36, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25685520

RESUMEN

Inflammatory breast cancer (IBC) is a highly metastatic and fatal form of breast cancer. In fact, IBC is characterized by specific morphological, phenotypic, and biological properties that distinguish it from non-IBC. The aggressive behavior of IBC being more common among young women and the low survival rate alarmed researchers to explore the disease biology. Despite the basic and translational studies needed to understand IBC disease biology and identify specific biomarkers, studies are limited by few available IBC cell lines, experimental models, and paucity of patient samples. Above all, in the last decade, researchers were able to identify new factors that may play a crucial role in IBC progression. Among identified factors are cytokines, chemokines, growth factors, and proteases. In addition, viral infection was also suggested to participate in the etiology of IBC disease. In this review, we present novel factors suggested by different studies to contribute to the etiology of IBC and the proposed new therapeutic insights.

6.
Int J Clin Exp Med ; 4(4): 265-75, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140598

RESUMEN

Inflammatory breast cancer (IBC) represents the most aggressive form of breast cancer, characterized by rapid progression, involvement of dermal lymphatic emboli and extensive metastatic lymph nodes. Matrix metalloproteinases (MMPs) are proteolytic enzymes that play an important role in cancer invasion and metastasis. Although the role of MMPs in non-IBC is well studied, little is known about its role in IBC. Thus the goal of the present study was to 1) investigate the expression and activity levels of membrane type matrix metalloproteinase-1 (MT1-MMP) and matrix metalloproteinase-2 and-9 (MMP-2 and MMP-9) in IBC versus non-IBC tissue samples and; 2) test correlation between expression of MT1-MMP and pro- and active forms of MMP-2 and MMP-9. We enrolled 51 breast cancer patients, 21 were diagnosed as IBC and 30 as non-IBC. Level of expression of MT1-MMP in carcinoma tissue was assessed by immunoblot and immunohistochemistry techniques. The expression and activation of MMP-2 and MMP-9 was measured by gelatin zymography. Our results revealed that MT1-MMP, pro-MMP-2, pro-MMP-9 and active MMP-2 were more expressed in IBC tissue versus non-IBC. Furthermore, we found that MT1-MMP expression correlates with expression of pro-MMP-2, pro-MMP-9 and active MMP-2 in IBC tissue samples and with MMP-9 in non-IBC tissue sample. In conclusion, our study suggests a role of MT1-MMP in inflammatory breast cancer disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...