Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
PeerJ ; 12: e17022, 2024.
Article En | MEDLINE | ID: mdl-38563017

Eucalyptus camaldulensis is a multifunctional tree and is globally used for the reclamation of problematic lands. Eucalyptus camaldulensis is prone to attack by a number of pathogens, but the most important threat is the Fusarium wilt (Fusarium oxysporum). Keeping in view the importance of E. camaldulensis and to manage this disease, five plant activators, i.e., salicylic acid (C7H6O3), benzoic acid (C7H6O2), citric acid (C6H8O7), dipotassium phosphate (K2HPO4), monopotassium phosphate (KH2PO4) and nutritional mixture namely Compound (NPK) and nutriotop (Fe, Zn, Cu, B, Mn) were evaluated in the Fusarium infested field under RCBD in the Research Area, Department of Forestry and Range Management, University of Agriculture, Faisalabad (UAF). Among plant activators, salicylic acid and a combination of compound + nutriotop exhibited the lowest disease incidence and enhanced fresh and dry weight of leaves compared to other treatments and control. Results of the environmental study indicated maximum disease incidence between 35-40 °C (max. T), 6-25 °C (mini. T), 70-80% relative humidity and 1.5-2.5 km/h wind speed while pan evaporation expressed weak correlation with disease development. It was concluded that Fusarium wilt of Eucalyptus camaldulensis could be managed through activation of the basal defense system of the host plant with provision of salicylic acid and balanced nutrition by considering environmental factors. Recent exploration is expected to be helpful for future research efforts on epidemiology and ecologically sound intervention of Fusarium wilt of Eucalyptus camaldulensis.


Eucalyptus , Fusarium , Salicylic Acid , Plant Leaves , Phosphates
2.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38408911

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Trigonella , Zinc , Boron/metabolism , Boron/pharmacology , Chlorophyll A/metabolism , Salt Stress , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Trigonella/metabolism , Zinc/metabolism , Zinc/pharmacology
3.
Sci Rep ; 13(1): 17519, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37845339

Arid soils are often weak, low in fertility, and lack essential plant nutrients. Organic amendments might be a feasible solution to counter the detrimental impact and rehabilitate weak arid soil for the growth of legumes. The study aimed to investigate how organic amendments of compost and humic acid may affect winter field pea productivity in arid soil. Over 2 years of field experiments, a range of treatments were applied, including different amounts of compost and humic acid. The results showed higher microbial carbon (C), and nitrogen (N) biomass, root length, shoot length, grains pod-1, and grain yield of pea, gained from the collective application of 8 Mg ha-1 compost and 15 kg ha-1 humic acid compared to all other treatments. Organic amendments increased soil microbial C density by 67.0 to 83.0% and N biomass by 46.0 to 88.0% compared with the control. The combined application of compost and humic acid increased soil microbial N biomass by 57.0 to 60.0% compared to the sole applications of compost-only and humic acid-only. It was concluded that organic amendments of 8 Mg ha-1 compost and 15 kg ha-1 humic acid in arid soil modulated microbial density, resulting in improved winter field pea productivity. This study suggests organic amendments of compost and humic acid might be a practicable solution to rehabilitate weak arid soil to grow legumes.

4.
Molecules ; 28(20)2023 Oct 10.
Article En | MEDLINE | ID: mdl-37894494

Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 M and 4.50 ± 0.11 µM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC50 values of 0.10 ± 0.050 and 0.20 ± 0.050 µM (against AChE) and 0.20 ± 0.050 and 0.30 ± 0.050 µM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.


Acetylcholinesterase , Alzheimer Disease , Humans , Aged , Acetylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Quality of Life , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship , Benzimidazoles/chemistry , Molecular Structure
5.
Front Chem ; 11: 1154128, 2023.
Article En | MEDLINE | ID: mdl-37090246

Copper oxide nanoparticles (CuO-NPs) have piqued the interest of agricultural researchers due to their potential application as fungicides, insecticides, and fertilizers. The Serratia sp. ZTB29 strain, which has the NCBI accession number MK773873, was a novel isolate used in this investigation that produced CuO-NPs. This strain can survive concentrations of copper as high as 22.5 mM and can also remove copper by synthesizing pure CuO-NPs. UV-VIS spectroscopy, DLS, Zeta potential, FTIR, TEM, and XRD techniques were used to investigate the pure form of CuO-NPs. The synthesized CuO-NPs were crystalline in nature (average size of 22 nm) with a monoclinic phase according to the XRD pattern. CuO-NPs were found to be polydisperse, spherical, and agglomeration-free. According to TEM and DLS inspection, they ranged in size from 20 to 40 nm, with a typical particle size of 28 nm. CuO-NPs were extremely stable, as demonstrated by their zeta potential of -15.4 mV. The ester (C=O), carboxyl (C=O), amine (NH), thiol (S-H), hydroxyl (OH), alkyne (C-H), and aromatic amine (C-N) groups from bacterial secretion were primarily responsible for reduction and stabilization of CuO-NPs revealed in an FTIR analysis. CuO-NPs at concentrations of 50 µg mL-1 and 200 µg mL-1 displayed antibacterial and antifungal activity against the plant pathogenic bacteria Xanthomonas sp. and pathogenic fungus Alternaria sp., respectively. The results of this investigation support the claims that CuO-NPs can be used as an efficient antimicrobial agent and nano-fertilizer, since, compared to the control and higher concentrations of CuO-NPs (100 mg L-1) considerably improved the growth characteristics of maize plants.

6.
Heliyon ; 9(2): e13033, 2023 Feb.
Article En | MEDLINE | ID: mdl-36846702

The organic compounds are known as an emerging class in the field of nonlinear optical (NLO) materials. In this paper, D-π-A configured oxygen containing organic chromophores (FD2-FD6) were designed by incorporating various donors in the chemical structure of FCO-2FR1. This work is also inspired by the feasibility of FCO-2FR1 as an efficient solar cell. Theoretical approach involving DFT functional i.e., B3LYP/6-311G(d,p) was utilized to achieve useful information regarding their electronic, structural, chemical and photonic properties. The structural modifications revealed significant electronic contribution in designing HOMOs and LUMOs for the derivatives with lowered energy gaps. The lowest HOMO-LUMO band gap obtained was 1.223 eV for FD2 compound in comparison to the reference molecule (FCO-2FR1) i.e., 2.053 eV. Moreover, the DFT findings revealed that the end-capped substituents play a key role in enhancing the NLO response of these push-pull chromophores. The UV-Vis spectra of tailored molecules revealed larger λ max values than the reference compound. Furthermore, strong intramolecular interactions showed the highest stabilization energy (28.40 kcal mol-1) for FD2 in the natural bond orbitals (NBOs) transitions, combined with the least binding energy (-0.432 eV). Successfully, the NLO results were favorable for the same chromophore (FD2) which showed the highest value for dipole moment (µ tot = 20.049 D) and first hyper-polarizability (ß tot = 11.22 × 10-27 esu). Similarly, the largest value for linear polarizability ⟨α⟩ was obtained as 2.936 × 10-22 esu for FD3 compound. Overall, the designed compounds were calculated with greater NLO values as compared to FCO-2FR1. The current study may provoke the researchers towards designing of highly efficient NLO materials via using the suitable organic linking species.

7.
Chemosphere ; 319: 138020, 2023 Apr.
Article En | MEDLINE | ID: mdl-36731676

Human hair and nail samples from Cuddalore fisherfolk populations were used as biomarkers for assessing metal concentrations in humans. Hair samples from 80 participants (47 men and 33 women) and nail samples from 40 participants (21 men and 19 women) were collected, and the concentrations of Cd, Cu, Pb, and Zn were assessed using an atomic absorption spectrophotometer (AAS). Metal data from AAS were compared with the survey questionnaire's personal and dietary parameters. Results indicate that both personal and dietary parameters may influence metal exposure; however, majority of the sources may have originated from metal-contaminated seafood. Higher metal accumulation in communities, especially those which consume seafood on a daily basis, may increase the possibility for them to get affected by metal-related diseases. Based on environmental parameters, people who live ≤500 m from industrial zones accumulate more metals. Further extensive studies with more individuals and more questionnaire parameters are needed to identify the metal accumulation pathway in humans.


Metals, Heavy , Male , Humans , Female , Metals, Heavy/analysis , Environmental Monitoring/methods , Hair/chemistry , Biomarkers , Diet
8.
Biol Trace Elem Res ; 201(2): 706-719, 2023 Feb.
Article En | MEDLINE | ID: mdl-35334063

Cobalt (Co) bioaccumulation, contamination, and toxicity in the soil environment, plant growth, and cattles' health are becoming a severe matter that can cause unembellished consequences in environmental safety and human health. The present research was conducted for the assurance of cobalt (Co) amassing in three forage plant species (Zea mays, Sorghum bicolor, Trifolium alaxandrium), from four ecological sites, and sewage water and in buffaloes blood was investigated. The analysis of variance showed significant differences for Co concentration in the soil and sewage water collected from all ecological sites. Meanwhile, summer and winter seasons and forage ecotypes significantly influenced the quantity of Co. The forage pastures also vary significantly in the concentration of Co in the above-ground parts. The highest Co level was present in Trifolium alaxandrium at ecological site-5. Cobalt taken from wastewater had a higher concentration in Trifolium alaxandrium during the winter. The samples which are collected from site-V and site-IV have the maximum concentration of Co because these areas receive highly contaminated water for irrigation. Cobalt tends to be bioaccumulated in the food chain and can cause serious problems in humans and animals. Bioaccumulation of cobalt in collected samples could be accredited to anthropogenic activities. Pollution load index values for all samples fell in the range below 1. The health risk index indicated the probability of health damage caused by the ingestion of contaminated fodder. An increase of Co concentration in soil, fodder, and blood owing to wastewater irrigation to crops was indicated as an outcome of this investigation. The results indicate that the Co toxicity in forage crops is attributed to Co bioaccumulation, transfer, and pollution load in the soil-water-cattle triangle. Efforts should be extended to avoid contamination of the food chain via Co-rich sewage water. Other nonconventional water resources should be used for forage irrigation.


Metals, Heavy , Soil Pollutants , Animals , Cattle , Humans , Cobalt/toxicity , Cobalt/analysis , Soil , Buffaloes , Wastewater , Livestock , Sewage , Bioaccumulation , Ecosystem , Water , Crops, Agricultural , Soil Pollutants/analysis , Metals, Heavy/analysis , Environmental Monitoring , Risk Assessment
9.
Environ Sci Pollut Res Int ; 30(10): 27980-27995, 2023 Feb.
Article En | MEDLINE | ID: mdl-36385342

The spatiotemporal variations of five heavy metals (Cd, Cu, Cr, Pb, and Zn) in the beach sediments along the Tamil Nadu coast sourced from various anthropogenic activities were assessed using atomic absorption spectrophotometry (AAS). Various pollution monitoring indices were computed to clearly understand the metal pollution status along the Tamil Nadu coastline. The metal concentrations in sediments were typically higher in the summer season than in the monsoon season. In the monsoon season, metal concentration followed a decreasing order of Zn > Cr > Cu > Pb > Cd, and in the summer season, the order was Cr > Zn > Cu > Pb > Cd. During the monsoon season, freshwater runoff from the rainfall dilutes the sediments and their trace element load. However, due to a lack of freshwater influx during the summer season, the heavy metals in the sediments get concentrated and showed elevated levels. Geo-accumulation index, ecological risk index, pollution load index, and contamination degree clearly depict that Cd and Pb have higher accumulation and pose greater hazard when compared with other metals. The rivers flowing in the region also transport the heavy metals from the mainland to the estuaries and coastal environments. Metal levels along the Tamil Nadu coast are influenced by various anthropogenic activities persistent along the coastline. Some of the activities that cause metal contamination are mining, milling, electroplating, furnishing, pharmaceutical industries, fishing, harbor activities, urban runoff, and agricultural runoff, which release a variety of toxic metals into the coastal environment.


Metals, Heavy , Water Pollutants, Chemical , Bays , India , Anthropogenic Effects , Cadmium , Lead , Environmental Monitoring , Water Pollutants, Chemical/analysis , Geologic Sediments , Metals, Heavy/analysis , Risk Assessment
10.
Front Plant Sci ; 13: 1014631, 2022.
Article En | MEDLINE | ID: mdl-36466232

Improving cropping systems together with suitable agronomic management practices can maintain dry farming productivity and reduce water competition with low N inputs. The objective of the study was to determine the photosynthetic and yield responses of maize and peanut under six treatments: sole maize, sole peanut, maize-peanut intercropping, maize-peanut rotation-intercropping, 20% and 40% N reductions for maize in the maize-peanut rotation-intercropping. Maize-peanut intercropping had no land-use advantage. Intercropped peanut is limited in carboxylation rates and electron transport rate (ETR), leading to a decrease in hundred-grain weight (HGW) and an increase in blighted pods number per plant (NBP). Intercropped peanut adapts to light stress by decreasing light saturation point (Isat) and light compensation point (Icomp) and increasing the electron transport efficiency. Intercropped maize showed an increase in maximum photosynthetic rate (Pnmax) and Icomp due to a combination of improved intercellular CO2 concentration, carboxylation rates, PSII photochemical quantum efficiency, and ETR. Compare to maize-peanut intercropping, maize-peanut rotation-intercropping alleviated the continuous crop barriers of intercropped border row peanut by improving carboxylation rates, electron transport efficiency and decreasing Isat, thereby increasing its HGW and NBP. More importantly, the land equivalent ratio of maize-peanut rotation-intercropping in the second and third planting years were 1.05 and 1.07, respectively, showing obvious land use advantages. A 20% N reduction for maize in maize-peanut rotation-intercropping does not affect photosynthetic character and yield for intercropped crops. However, a 40% N reduction decreased significantly the carboxylation rates, ETR, Icomp and Pnmax of intercropped maize, thereby reducing in a 14.83% HGW and 5.75% lower grain number per spike, and making land-use efficiency negative.

11.
Saudi J Biol Sci ; 25(1): 178-181, 2018 Jan.
Article En | MEDLINE | ID: mdl-29379377

The oxygen consumption rate [Formula: see text] and lactate production of the Amphisbaenian worm lizard Diplometopon zarudnyi were measured at temperatures ranging from 15 °C to 35 °C at 5 °C intervals. The [Formula: see text] was significantly different between resting and active states at any specified temperature, while the average value at the resting state generally rose with increased temperature from 15 °C (0.05 ml O2/g/h) to 25 °C (0.111 ml O2/g/h). The aerobic respiration scopes at resting and active states were also significantly different. The highest Q10 values (3.24 and 1.69) were obtained at 15 °C-20 °C and 30 °C-35 °C during resting and active states, respectively, with these values being significantly different. Lactate concentrations were significantly higher during active states than when resting, and the anaerobic scope was found to increase with increased temperature. There was a proportional increase in ATP molecules (µmoles/g/2 min) during aerobic or anaerobic respiration, as well as in total metabolic scope, with increasing temperature, and the anaerobic scope showed significantly higher values than the aerobic scope, confirming the importance of anaerobic behavior for this species.

...