Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057998

RESUMEN

Eimeria spp. are responsible for the economic loss of both domestic and wild animals due to coccidiosis, the most common parasitic disease. The resistance to currently available drugs used to treat coccidiosis has been proven. Medicinal plants that contain physiologically active phytochemicals have been widely used in traditional medicine. Teucrium polium leaf extract (TPLE) has been shown to exhibit pharmacological, antioxidant, and anticoccidial properties in different experiments. Here, our investigation focused on how T. polium leaf extract affected the way that Eimeria papillate caused intestinal injury in mice. Thirty-five male Swiss albino mice were divided into seven groups, as follows: group I: untreated and uninfected (negative control); group II: uninfected, treated group with TPLE (150 mg/kg b.w); and group III: infected untreated (positive control). Groups III-VII were orally administered 103 sporulated E. papillata oocysts. A total of 60 min after infection, groups IV-VI were treated for five successive days with 50, 150, and 250 mg/kg b.w TPLE, respectively, while group VII was treated with amprolium (120 mg/kg b.w.). The mice had been euthanized on the fifth day post-infection, and the jejunum tissues were prepared for histology and oxidative stress studies. A total of 150 mg/kg of TPLE was the most effective dosage, significantly decreasing oocyst output by about 80.5%, accompanied by a significant reduction in the number of developmental parasitic phases in jejunal sections. In addition, the decrease in the number of goblet cells in the jejuna of mice raised after treatment. Also, TPLE greatly diminished the body weight loss of infected mice. Moreover, our research proved that TPLE reduced oxidative damage due to E. papillata infection via decreasing intestinal malondialdehyde (MDA) and nitric oxide (NO) levels and increasing reduced superoxide dismutase (SOD) and glutathione (GSH) levels. These results demonstrated that TPLE had potent anticoccidial properties. TPE's efficacy as a natural antioxidant has also been demonstrated in reducing oxidative stress and enhancing antioxidant systems to mitigate biochemical and histological changes in the jejunum caused by E. papillata.

2.
Org Biomol Chem ; 22(32): 6561-6574, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082794

RESUMEN

Vanillin, a key flavor compound found in vanilla beans, is widely used in the food and pharmaceutical industries for its aromatic properties and potential therapeutic benefits. This study presents a comprehensive quantum chemical analysis to elucidate the interaction mechanisms of vanillin with CYP450 enzymes, with a focus on mechanism-based inactivation. Three potential inactivation pathways were evaluated: aldehyde deformylation, methoxy dealkylation, and acetal formation. Aldehyde deformylation was identified as the most energy-efficient, involving the removal of the aldehyde group from vanillin and leading to the formation of benzyne intermediates that could react with the iron porphyrin moiety of CYP450, potentially resulting in enzyme inactivation. Further investigation into the interactions of vanillin with CYP2E1 and CYP1A2 was conducted using molecular docking and molecular dynamics (MD) simulation. The docking analyses supported the findings from DFT studies, wherein vanillin revealed high binding affinities with the studied isozymes. Moreover, vanillin occupied the main binding site in both isozymes, as evidenced by the inclusion of the heme moiety in their binding mechanisms. Employing a 100 ns molecular dynamics simulation, we scrutinized the interaction dynamics between vanillin and the two isozymes of CYP450. The assessment of various MD parameters along with interaction energies revealed that vanillin exhibited stable trajectories and substantial energy stabilization during its interaction with both CYP450 isozymes. These insights can guide future research and ensure the safe application of vanillin, especially in scenarios where it may interact with CYP450 enzymes.


Asunto(s)
Benzaldehídos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Benzaldehídos/metabolismo , Benzaldehídos/química , Inocuidad de los Alimentos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/química , Redes y Vías Metabólicas , Teoría Funcional de la Densidad
3.
Biomed Chromatogr ; : e5972, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079944

RESUMEN

Many plants are efficient anticoccidial agents owing to their content of active chemicals. Drug-resistant Eimeria species have emerged as a result of excessive drug use. The current work aimed to investigate the oocysticidal activity (Eimeria papillata) of Olea europaea stem extract (OESE) and leaf extract (OELE) in vitro. The results of gas chromatography-mass spectrometry analysis for OELE and OESE showed the presence of 12 and 9 phytochemical compounds, respectively. Also, chemical examination revealed that the plant extracts are rich in phenols, flavonoids and tannins. Additionally, the best radical scavenging activity of OESE and OELE was at a concentration of 100 µg/ml, reaching 92.04 ± 0.02 and 92.4 ± 0.2%, respectively. The in vitro study revealed that concentrations of 200 mg/ml from OESE and OELE caused significant inhibition (100%) of process sporulation for E. papillata oocysts, in contrast to the other commercial products, which displayed varying degrees of suppression sporulation. Our findings showed that OESE and OELE have anticoccidial activity, which motivates further the conduction of in vivo studies in the search for a less expensive and more efficient cure.

4.
Front Immunol ; 15: 1430960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055709

RESUMEN

Background: Over the last decade, extensive use of coccidiostats to treat and control Eimeria infection has developed drug resistance, prompting the search for new alternative therapies. Rhatany is proven to have various pharmacological properties. Objective: The present study aimed to in vitro and in vivo evaluate the effect of Rhatany roots extract (RRE) as an anti-eimerial and anti-apoptotic agent against murine eimeriosis induced by Eimeria papillata. Methods: Phytochemical screening by gas chromatography-mass spectrometry analysis (GC-MS) was used to detect active compounds in RRE. In vitro anti-eimerial activity of RRE (200, 100, 50 mg/ml), amprolium, phenol, Dettol™, and formalin were studied after incubation with non-sporulated Eimeria oocysts. For the in vivo study, twenty-five male C57BL/6 mice were randomly allocated into five groups. Animals in the first group were just given distilled H2O, while those in the second group were given 200 mg/kg RRE for 5 days. The Eimeria parasite's oocysts were infected into the third, fourth, and fifth groups. For treatment, RRE (200 mg/kg) and amprolium (120 mg/kg) were orally given to the 4th and 5th groups for five days, respectively. All mice were euthanized, on day 5 post-infection, to collect the jejunal tissues under study. Investigations were undertaken into the oocyst output in feces and goblet cells in mice jejuna. Assays for glutathione peroxidase (GPx), hydrogen peroxide (H2O2), and myeloperoxidase (MPO) were also performed. In jejunal tissue, cysteine aspartic acid protease-3 (Caspase-3) was counted using immunohistochemistry, while BCL2-associated X protein (Bax) and B-cell lymphoma-2 (BCL-2) were assayed using ELISA. In addition, mRNA expression of the goblet cell response gene (MUC2) was detected using real-time PCR. Results: Phytochemical screening by GC-MS demonstrated the presence of 22 compounds in the RRE. The in vitro study revealed that RRE significantly inhabited the oocyst sporulation in a dose-dependent manner. By day 5 after infection with the Eimeria parasite, the number of oocysts in mice feces was significantly reduced after RRE treatment (1.308 × 106 ± 1.36 × 105 oocysts/g feces) compared to the infected group (5.387 × 106 ± 4.29 × 105 oocysts/g feces). Moreover, the Eimeria infection reduced the number of goblet cells of mice jejuna and its specific gene, MUC2. The treatment with RRE increased the number of goblet cells/villus from 3.45 ± 0.17 to 6.04 ± 0.23, associated with upregulation for MUC2 from 0.26 to 2.39-fold. Also, the Eimeria experimental infection lowered the activity of the antioxidant enzyme represented by GPx (23.99 ± 3.68 mg/g tissue), while increasing the stress parameters of hydrogen peroxide (0.07 ± 0.01 mM/g) as well as the activity of MPO (66.30 ± 3.74 U/mg). The production of apoptotic markers including Caspase-3 (68.89 ± 2.67 U/g) and Bax (159.05 ± 6.50 pg/ml) was significantly elevated while decreasing the anti-apoptotic marker of BCL2 (0.42 ± 0.07 pg/ml). Our study proved that RRE significantly reduced oxidative stress, and apoptotic markers as well as the inflammatory activity of MPO. Also, antioxidant enzyme and anti-apoptotic activity in the jejunum of E. papillata-infected mice were enhanced after RRE treatment. Conclusion: Our study highlights the potential of RRE as a natural solution for coccidiosis management by modulating apoptosis in E. papillata host cells. However, further research is needed to fully understand the underlying mechanisms and enhance our understanding of its therapeutic efficacy.


Asunto(s)
Apoptosis , Coccidiosis , Eimeria , Extractos Vegetales , Raíces de Plantas , Animales , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Coccidiosis/veterinaria , Eimeria/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Masculino , Raíces de Plantas/química , Ratones Endogámicos C57BL
5.
Front Vet Sci ; 11: 1392238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872800

RESUMEN

Introduction: Eimeria spp. are intracellular protozoan parasites of the phylum Apicomplexa causing economic losses to various wild and domestic animals. An eimerian species infecting Columba livia domestica was identified in this study. Methods: A total of 15 faecal samples were examined by floatation technique, a prevalence rate of 60% was reported. Eimerian oocysts were sporulated in 2.5% potassium dichromate solution then identified using morphological and molecular (DNA amplification of the 18S rRNA and ITS-1 genes) diagnostic techniques. Results: Sporulated oocysts were identified as Eimeria labbeana-like, after morphometry with typical bi-layered wall with spherical to subspherical oocysts morphology. A polar granule is present, but no micropyle or oocyst residuum. Sporocysts are elongated ovoidal with stieda body. Sporocyst residuum with many granules and sporozoites with refractile bodies and nucleus. Both 18S rRNA and ITS-1 sequences have been deposited in GenBank database. DNA sequences from the partial 18S rRNA generated from the oocysts were found to be related to eimerian and isosporan parasites found in domestic pigeons. For the first time, ITS-1 sequences for E. labbeana-like were provided. Conclusion: The necessity of using molecular techniques to describe pigeon intestinal coccidian parasites in conjunction with traditional morphology-based tools was emphasized in this work in order to understand the biology of such parasites.

6.
Front Immunol ; 15: 1404297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751432

RESUMEN

Introduction: Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods: A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results: Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion: Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.


Asunto(s)
Antioxidantes , Linfocitos T CD4-Positivos , Coccidiosis , Coccidiostáticos , Interleucina-10 , Extractos Vegetales , Animales , Masculino , Ratones , Antioxidantes/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Coccidiosis/tratamiento farmacológico , Coccidiosis/inmunología , Coccidiostáticos/farmacología , Modelos Animales de Enfermedad , Eimeria/efectos de los fármacos , Interleucina-10/metabolismo , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Raíces de Plantas/química
7.
Microsc Res Tech ; 87(7): 1467-1478, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38407507

RESUMEN

Coccidiosis is a protozoan parasitic disease caused by Eimeria species and affects wild and domestic animals. Coccidiostats are currently available to control this disease, although drug resistance has been confirmed for all of them. As a result, there is an urgent need to identify eco-friendly agents to control and treat this disease. This study aimed to investigate the ameliorative role of the Krameria lappacea roots extract (KLRE) on the outcome of coccidiosis induced by Eimeria papillata. Male C57BL/6 mice were divided into seven groups (5 mice/group), as follows: Group 1: noninfected-nontreated (control group), Group 2: noninfected-treated group with KLRE (200 mg/kg), Group 3: infected-nontreated group, Group 4: infected-treated group with KLRE (50 mg/kg), Group 5: infected-treated group with KLRE (100 mg/kg), Group 6: infected-treated group with KLRE (200 mg/kg), and Group 7: infected-treated group with amprolium (120 mg/kg). Groups (3-7) were inoculated orally with 1 × 103 sporulated E. papillata oocysts. One hour after infection, groups (4-6) were daily treated for 5 days with KLRE and amprolium. On day 5 postinfection, oocyst output was determined, and mice were euthanized for the collection of jejuna then preparation of histological sections and jejunal homogenate was used for the determination of biochemical and oxidative damage markers. The coccidial infection induced weight loss of mice by 3.971%, which improved after KLRE to -1.512%. After KLRE treatment, the rate of feed intake was improved to be 52.21 ± 2.30 than those in infected group (40.47 ± 2.25). Oocyst output was significantly reduced in mice treated with KLRE (1.308 × 106 oocysts/g.feces) compared with those in the infected group (5.387 × 106 oocysts/g.feces). E. papillata infection induced marked histological alterations within jejunum tissue. After treatment, KLRE was able to impair the development of parasite stages (meronts, gamonts, and developing oocysts) in the jejunum through a significant reduction of number and size in comparison with the infected group. Infection with E. papillata induced a disturbance in the nutrient absorption in the jejunal mice tissue, which improved after the treatment with KLRE and amprolium. Also, KLRE counteracted significantly the E. papillata-induced loss of reduced glutathione and total antioxidant capacity. Our findings indicate that KLRE could be used as an alternative to the available coccidiostats currently available. RESEARCH HIGHLIGHTS: Krameria lappacea exhibit significant anticoccidial and antioxidant activities induced by E. papillata infection. Krameria lappacea exhibit significant improvement in the pathological alterations of the jejunal tissue induced by E. papillata infection.


Asunto(s)
Coccidiosis , Eimeria , Yeyuno , Ratones Endogámicos C57BL , Extractos Vegetales , Raíces de Plantas , Animales , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Coccidiosis/veterinaria , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Eimeria/efectos de los fármacos , Yeyuno/parasitología , Yeyuno/efectos de los fármacos , Yeyuno/patología , Masculino , Raíces de Plantas/química , Ratones , Coccidiostáticos/farmacología , Coccidiostáticos/uso terapéutico , Modelos Animales de Enfermedad
8.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 310-323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867370

RESUMEN

Coccidiosis, caused by apicomplexan Eimeria species, is a protozoan disease that affects various species of wild and domestic animals. However, data available on Eimeria diversity in ruminants in Saudi Arabia is meagre. Therefore, this study was designed to investigate some eimerian parasites infecting sheep (Sawakni and Harrie breeds) using microscopy and molecular methods for the first time in Saudi Arabia. Twenty-four fecal samples were collected from sheep farms. Based on the floatation technique, eimerian oocysts were observed in 8 of the 24 (33.33%) fecal samples. The coccidian-positive samples were subjected to fecal culture in a shallow layer of 2.5% potassium dichromate (K2 Cr2 O7 ). Detected eimerian oocysts were described micromorphometrically as the basis for traditional oocyst identification. Morphologically, the sporulated oocysts were similar to those of sheep eimerian parasies; Eimeria faurei and Eimeria crandallis. PCR products from the two eimerian species detected from Sawakni and Harrie breeds were sequenced and were found to be distinct from each other with mutations at five positions. One of them clustered with E. crandallis with 99.8%-100% identity with sequences available in GenBank. E. crandallis was obtained from two Sawakni sheep and two Harrie sheep. The other sequences grouped with E. faurei with 99.8% identity with the only sequences available in GenBank. E. crandallis was detected from both Sawakni and Harrie breeds whereas E. faurei was detected only from Sawakni sheep. The findings of this study have implications for the importance of morphometric identification with advanced molecular tools to confirm the identities of sheep Eimeria species and to address the taxonomic study of this eimeriid parasite at the species level.


Asunto(s)
Coccidiosis , Eimeria , Parásitos , Enfermedades de las Ovejas , Animales , Ovinos , Eimeria/genética , Enfermedades de las Ovejas/parasitología , Coccidiosis/veterinaria , Animales Domésticos , Heces/parasitología
9.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 566-575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38149474

RESUMEN

Coccidiosis is an intestinal protozoan disease that affects the poultry industry worldwide. The severity of this disease varies depending on the identity of the infectious agents. Therefore, this study was carried out to identify the Eimeria species that affect broiler chickens, Gallus gallus domesticus, through morphological and molecular phylogenetic analyses. Twenty-five faecal samples were collected from the broiler chickens in a commercial poultry farm in Riyadh (Saudi Arabia). Using the floatation technique, faeces were examined microscopically for the Eimeria occurrence. Identification of Eimeria species was performed based on morphological criteria and molecular tools (DNA amplification for the partial small subunit ribosomal RNA (18S rRNA), internal transcribed spacer (ITS)-1, and mitochondrial cytochrome c oxidase I (COI) genes. In this study, 32% (8 out of 25) of collected samples were found to be positive for coccidiosis. After sporulation in potassium dichromate (K2Cr2O7), the sporulated oocysts were observed as ovoid and measured 18.37-23.19 µm (19.87) long and 15.07-18.67 µm (16.46) wide, with the anterior location of a polar granule and absence of micropyle. These Eimeria oocysts were assumed to size and shape characteristics of Eimeria acervulina. Molecular analysis was conducted on the sequences of the polymerase chain reaction products from the three genes studied (18S rRNA, ITS-1, and COI). At the three genes, results showed that the resultant sequences clustered with E. acervulina from different regions confirming morphological description. This study highlighted the importance of molecular techniques to detect avian Eimeria species more than the traditional morphology-based tool to optimise the appropriate anticoccidial strategies for long-term control in the studied area.


Asunto(s)
Pollos , Coccidiosis , Eimeria , Filogenia , Enfermedades de las Aves de Corral , Animales , Eimeria/genética , Eimeria/clasificación , Enfermedades de las Aves de Corral/parasitología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Heces/parasitología
10.
BMC Vet Res ; 19(1): 248, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017513

RESUMEN

Coccidiosis is the most prevalent disease-causing widespread economic loss among farm and domestic animals. Currently, several drugs are available for the control of this disease but resistance has been confirmed for all of them. There is an urgent need, therefore, for the identification of new sources as alternative treatments to control coccidiosis. The present work aimed to study the effect of the Persea americana extract (PAE) as an anti-coccidial, anti-oxidant, and anti-apoptotic modulator during murine intestinal Eimeria papillata infection. A total of 25 male mice were divided into five groups, as follows: Group1: Non-infected-non-treated (negative control), Group2: Non-infected-treated group with PAE (500 mg/kg b.w). Group3: Infected-non-treated (positive control), Group4: Infected-treated group with PAE (500 mg/kg b.w.), and Group5: Infected-treated group with Amprolium (120 mg/kg b.w.). Groups (3-5) were orally inoculated with 1 × 103 sporulated E. papillata oocysts. After 60 min of infection, groups (4 and 5) were treated for 5 consecutive days with the recommended doses of PAE and amprolium. The fact that PAE has an anti-coccidial efficacy against intestinal E. papillata infection in mice has been clarified by the reduction of fecal oocyst output on the 5th day post-infection by about 85.41%. Moreover, there is a significant reduction in the size of each parasite stage in the jejunal tissues of the infected-treated group with PAE. PAE counteracted the E. papillata-induced loss of glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (TCA). E. papillata infection also induced an increase in the apoptotic cells expressed by caspase-3 which modulated after PAE treatment. Moreover, the mRNA expression of the goblet cell response gene, mucin (MUC2), was upregulated from 0.50 to 1.20-fold after treatment with PAE. Based on our results, PAE is a promising medicinal plant with anti-coccidial, anti-oxidant, and anti-apoptotic activities and could be used as a food additive.


Asunto(s)
Coccidiosis , Eimeria , Persea , Enfermedades de los Roedores , Animales , Ratones , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Amprolio/farmacología , Amprolio/uso terapéutico , Coccidiosis/tratamiento farmacológico , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Oocistos
11.
J Nematol ; 55(1): 20230050, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38026547

RESUMEN

Pigeons are a cosmopolitan group of birds with abundant and large populations associated with human activities. This study focused on determining parasitic infections within domestic pigeons (Columba livia domestica). Forty-eight pigeons were examined for infections, of which 29.16% were infected with a nematode parasite, identified as Hadjelia truncata (Habronematidae), under the koilin layer of their gizzards. The population of nematodes in infected gizzards did not exceed 20 adult worms. DNA from the gizzard worms was extracted and subjected to PCR using primers that amplify the partial 18S rDNA and cytochrome C oxidase subunit I (COX I) regions. Identification of this parasite based on microscopic study revealed the presence of trilobed lips with cephalic papillae and amphidial pores, as well as other characteristic features. In males, spicules were unequal with the presence of six pedunculated pairs of caudal papillae (4 pre- and 2 post-anal) and a tail surrounded with caudal ala. In females, the vulva was a rounded aperture located in front of the posterior end of the esophagus and uteri, which was filled with numerous embryonated eggs. DNA Sequences from partial 18S rDNA were homologous to sequences obtained from H. truncata in GenBank with a high percentage of identity. DNA sequences from mitochondrial gene COX I, however, were unique, and they were the first sequenced for H. truncata, since no sequences for this taxon were previously available in GenBank. Histopathological examination revealed enlargement of infected gizzards in comparison to non-infected ones, with the presence of necrosis and interstitial infiltration in the koilin layer. Concentrations of heavy metals (Fe, Cu, Zn, Cd, Cr, and Co) were measured using inductivity-coupled plasma in tissues (liver, muscles, and gizzards) from infected and non-infected pigeons as well as their parasites. Results showed different affinities of metals to tissues. Recovered parasites can minimize element concentration from their pigeon tissues. In Saudi Arabia, this study was considered the first report identifying pigeon nematodes and evaluating of the effects of their pathogenicity on the animals' welfare, as well as their application as a useful tool for monitoring environmental pollution.

12.
Microsc Res Tech ; 86(12): 1655-1666, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606089

RESUMEN

Because of the drug resistance, medicinal plants are used more frequently than coccidiostats to treat and control coccidiosis. Punica granatum is a powerful antioxidant with a variety of medicinal uses. This study used an in vitro experiment to investigate how different P. granatum from Yemen (Y) and Egypt (E) sources affected oocyst sporulation and served as an anthelminthic effector. In contrast to PGE and mebendazole, PGY (200 mg/mL) has the shortest time to paralyze and death the earthworm Eisenia fetida in this investigation. In addition, the treated worm groups' cuticle thickness and shrinkage in comparison to the control group were assessed and contrasted. Eimeria papillata is used as a model protozoan parasite in anticoccidial assays. This study shows that P. granatum affects oocysts sporulation in a dose-dependent manner, with maximal percentages of 100% (PGY) and 48.60% (PGE) at 96 h for P. granatum concentrations of 200 mg/mL. Inhibition (%) was compared to various detergents, as well as positive and negative controls. According to our research, the P. granatum extract had powerful anthelmintic and anticoccidial properties, with the potency changing according to the environmental conditions of each fruit source. RESEARCH HIGHLIGHTS: Habitat of the plant is useful for production and accumulation of some secondary metabolites in plants which be effective for the therapeutic uses. Different parameters in the environmental ecosystem affecting variation in chemical compositions and biological activity of P. granatum.


Asunto(s)
Antiinfecciosos , Coccidiosis , Granada (Fruta) , Animales , Antiparasitarios/farmacología , Ecosistema , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Antiinfecciosos/farmacología , Oocistos
13.
ACS Omega ; 8(26): 23806-23811, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426206

RESUMEN

Although several anticoccidial medications have long been used to prevent coccidiosis, their adverse effects necessitate the use of alternative control methods. In this study, Eimeria papillate was used to infect the mouse jejunum, and the response of the liver to induced coccidiosis on treatment with nanosilver synthesized from Zingiber officinale (NS) and the reference anticoccidial drug amprolium was compared. Mice were infected with 1000 sporulated oocysts to induce coccidiosis. NS was able to inhibit the sporulation of E. papillate by approximately 73%, and also, the NS treatment improved the liver function in mice, as proven by lower levels of the liver enzymes AST, ALT, and ALP. Furthermore, treatment with NS improved the parasite-induced liver histological injury. Also, glutathione and glutathione peroxidase levels increased following treatment. Moreover, the concentrations of metal ions, Fe, Mg, and Cu, were studied, where only the Fe concentration was affected after treatment of the E. papillate-infected mice with Bio-NS. The presence of phenolic and flavonoid compounds in NS is thought to be responsible for its positive effects. Overall, the current study found that NS outperformed amprolium in E. papillata-induced mice.

14.
Biomedicines ; 11(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37189672

RESUMEN

A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.

15.
Microsc Res Tech ; 86(6): 714-724, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37083178

RESUMEN

Coccidiosis is a protozoan parasitic disease affecting different animal species. Resistance has been reported for all available anticoccidial drugs. Recently, green synthesis of nanoparticles is considered a new therapeutic tool against this parasitic disease. The present work aimed to study the effect of biosynthesized nanoselenium from Azadirachta indica leaf extracts (BNS) against Eimeria papillata-induced infection in mice. The phytochemical analysis of leaf extracts contained 33 phytochemical components. The BNS was spherical with ⁓68.12 nm in diameter and an absorption peak at 308 nm via UV-spectra. The data showed that mice infected with E. papillata revealed the highest oocyst output on the 5th-day post-infection (p.i.). Infection also induced injury and inflammation of the mice jejunum. Treatment with BNS resulted in a 97.21% suppression for the oocyst output. The treated groups with BNS showed enhancement in feed intake as compared to the infected group. Histological examinations showed a significant reduction in the intracellular developmental Eimeria stages in the jejunal tissues of infected-treated mice of about 24.86 ± 2.38 stages/10 villous crypt units. Moreover, there was a significant change in the morphometry for Eimeria stages after the treatment with BNS. Infection induced a disturbance in the level of carbohydrates and protein contents in the infected mice which enhanced after treatment with BNS. In addition, BNS counteracted the E. papillata-induced loss of the total antioxidant capacity. Collectively, BNS is considered a promising anticoccidial and antioxidant effector and could be used for the treatment of coccidiosis.


Asunto(s)
Azadirachta , Coccidiosis , Eimeria , Meliaceae , Animales , Ratones , Antioxidantes/farmacología , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Coccidiosis/parasitología , Extractos Vegetales/química , Pollos
16.
Front Immunol ; 14: 1139899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875142

RESUMEN

One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.


Asunto(s)
Coccidiosis , Eimeria , Selenio , Humanos , Animales , Ratones , Amprolio , Yeyuno , Apoptosis , Inflamación , Peso Corporal , Glutatión
17.
Parasitol Int ; 95: 102741, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36871789

RESUMEN

Apicomplexan parasites, especially Eimeria sp., are the main intestinal murine pathogens, that lead to severe injuries to farm and domestic animals. Many anticoccidial drugs are available for coccidiosis, which, leads to the development of drug-resistant parasites. Recently, natural products are considered as an alternative agent to control coccidiosis. This study was designed to evaluate the anticoccidial activity of the Persea americana fruit extract (PAFE) in male C57BL/6 mice. A total of 35 male mice were divided into seven equal groups (1, 2, 3, 4, 5, 6, and 7). At day 0, all groups except the first group which served as uninfected-untreated control were infected orally with 1 × 103E. papillata sporulated oocysts. Group 2 served as uninfected-treated control. Group 3 was considered an infected-untreated group. After 60 min of infection, groups 4, 5, and 6 were treated with oral doses of PAFE aqueous methanolic extract (100, 300, and 500 mg/kg of body weight, respectively). Group 7 was treated with amprolium (a reference drug for coccidiosis). PAFE with 500 mg/kg, was the most effective dose, inducing a significant reduction in the output of oocysts in mice feces (by about 85.41%), accompanied by a significant decrease in the number of the developmental parasite stages and a significant elevation of the goblet cells in the jejunal tissues. Upon treatment, a significant change in the oxidative status due to E. papillata infection was observed, where the levels of glutathione (GSH) increased, while, levels of malondialdehyde (MDA) and nitric oxide (NO) were decreased. In addition, the infection significantly upregulated the inflammatory cytokines of interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ). This increase in mRNA expression of IL-1ß, TNF-α, and IFN-γ was about 8.3, 10.6, and 4.5-fold, respectively, which significantly downregulated upon treatment. Collectively, P. americana is a promising medicinal plant with anticoccidial, antioxidant, and anti-inflammatory activities and could be used for the treatment of coccidiosis.


Asunto(s)
Coccidiosis , Eimeria , Lauraceae , Persea , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor de Necrosis Tumoral alfa , Frutas , Ratones Endogámicos C57BL , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Coccidiosis/parasitología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Interferón gamma/uso terapéutico , Oocistos , Pollos
18.
Animals (Basel) ; 13(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978551

RESUMEN

Due to the presence of different parasite taxa and other disease-causing agents, all fish species are extremely prone to dangers. As a result, the current study focused on some of the monogenean parasites that infect one of the economically important fish species, the soldier bream Argyrops filamentosus, from the Red Sea coast of Jeddah, Saudi Arabia. Following that, thirty A. filamentosus fish specimens were examined for monogenean parasites. The parasitic species were isolated and morphologically and molecularly studied. The presence of one monogenean species of Haliotrema susanae (F: Ancyrocephalidae) infecting gills was observed in 50% of the investigated fish species. The ancyrocephalid species Haliotrema susanae is characterized by having all generic features within the genus Haliotrema. It could be distinguished from other species within this genus by the male copulatory organ including a copulatory tube with no accessory piece and a haptor made up of two pairs of anchors, two bars, and seven pairs of marginal hooks. As ectoparasitic taxa of the investigated sparid fish, the current study of Haliotrema species constitutes the first report of this genus. A molecular phylogenetic analysis based on the partial 28S rRNA gene region was analyzed to investigate the phylogenetic affinity of this parasite with the genus Haliotrema belonging to Ancyrocephalidae. This study considers the addition of a new genetic sequence for this parasite species.

19.
Environ Sci Pollut Res Int ; 30(15): 44566-44577, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36694067

RESUMEN

Eimeriosis, an infection with Eimeria spp. that affects poultry, causes huge economic losses. Silver nanoparticles (AgNPs) have antibacterial and antifungal properties, but their action against Eimeria infection has not yet been elucidated. This study demonstrates the action of AgNPs in the treatment of mice infected with Eimeria papillata. AgNPs were prepared from Zingiber officinale rhizomes. Phytochemical screening by gas chromatography-mass spectrometry analysis (GC-MS) was used to detect active compounds. Mice were divided into five groups: uninfected mice, uninfected mice that were administered AgNPs, untreated mice infected with 103 sporulated oocysts of E. papillata, infected mice treated with AgNPs, and infected mice treated with amprolium. Characterization of the samples showed the AgNPs to have nanoscale sizes and aspherical shape. Phytochemical screening by GC-MS demonstrated the presence of 38 phytochemical compounds in the extract of Z. officinale. Mice infected with E. papillata-sporulated oocysts were observed to have many histopathological damages in the jejuna, including a decrease in the goblet cell numbers affecting the jejunal mucosa. Additionally, an increased oocyst output was also observed. The treatment of infected mice with AgNPs resulted in the improvement of the jejunal mucosa, increase in the number of goblet cell, and decrease in the number of meronts, gamonts, and developing oocysts in the jejuna. Moreover, AgNPs also led to decreased oocyst shedding in feces. The results revealed AgNPs to have an anticoccidial effect in the jejunum of E. papillata-infected mice and, thus, could be a potential treatment for eimeriosis.


Asunto(s)
Coccidiosis , Eimeria , Nanopartículas del Metal , Animales , Ratones , Heces , Yeyuno , Oocistos , Plata/farmacología
20.
Front Cell Infect Microbiol ; 12: 955042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034714

RESUMEN

Herbal extracts are promising agents against various parasitic diseases, such as malaria. This study aimed to evaluate the ameliorative action of Eucalyptus camaldulensis extract (ECE) against hepatic damage caused by Plasmodium chabaudi infection. Mice were allocated into five groups as follows: two groups served as the control non-infected groups that received distilled water and ECE, respectively; subsequent three groups were infected with 106 P. chabaudi parasitized erythrocytes; the last two groups were infected with the parasite and then treated with ECE and chloroquine. On day 8 post-infection, the parasite count increased inside erythrocytes (59.4% parasitemia in the infected group). Parasitemia was successfully reduced to 9.4% upon ECE treatment. Phytochemical screening using GC mass spectrometry revealed that ECE contained 23 phytochemical components. Total phenolics and flavonoids in ECE were 104 ± 2 and 7.1± 3 µg/mL, respectively, with 57.2% antioxidant activity. ECE ameliorated changes in liver histopathology and enzymatic activity of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. In addition, ECE prevented oxidative damage induced by the parasite in the liver, as evidenced by the change in the liver concentrations of glutathione, nitric oxide, malondialdehyde, and catalase. Moreover, ECE was able to regulate the expression of liver cytokines, interleukins-1ß and 6, as well as IFN-γ mRNA. ECE possesses antiplasmodial, antioxidant, and anti-inflammatory activity against liver injury induced by the parasite P. chabaudi.


Asunto(s)
Eucalyptus , Malaria , Animales , Antioxidantes , Hígado , Ratones , Estrés Oxidativo , Parasitemia , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA