Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(3): e0264381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35231042

RESUMEN

The reproductive success of animals breeding in cities is often lower compared to counterparts that inhabit rural, suburban, and peri-urban areas. Urban dwelling may be especially costly for offspring development and survival. Diet composition and diversity may underlie factors that lead to lower fitness, particularly if prey abundance and quality decline in modified environments. Moreover, breeding success may change over the course of a season, an effect that may be augmented in urban areas. In this study, we tested the hypothesis that habitat and date affected nestling house wren (Troglodytes aedon) body condition and survival, and examined whether diet explained differences in nestling success. We monitored urban and rural populations of house wrens breeding in nest boxes, and tested whether clutch size, nestling survivorship, and nestling body condition varied by habitat or by date, and then characterized the diet of a subset of nestlings with DNA metabarcoding of fecal samples. Urbanization had clear impacts on house wren nestling fitness: urban broods contained fewer, smaller nestlings. Early nestling survival decreased as the breeding season progressed, and this effect was more pronounced in the urban population. However, the diets of urban and rural nestlings were similar and did not explain differences in body condition. Instead, across populations, diet changed with date, becoming less diverse, with fewer Lepidoptera and more Orthoptera. Regardless of habitat, adult house wrens provide nestlings with similar types of foods, but other factors, such as quantity or quality of prey delivered, may lead to fitness disparities between urban and rural nestlings.


Asunto(s)
Dieta , Pájaros Cantores , Animales , Ciudades , Tamaño de la Nidada , Urbanización
2.
Am J Vet Res ; 82(7): 589-597, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34166083

RESUMEN

OBJECTIVE: To use RNA sequencing (RNAseq) to characterize renal transcriptional activities of genes associated with proinflammatory and profibrotic pathways in ischemia-induced chronic kidney disease (CKD) in cats. SAMPLES: Banked renal tissues from 6 cats with experimentally induced CKD (renal ischemia [RI] group) and 9 healthy cats (control group). PROCEDURES: Transcriptome analysis with RNAseq, followed by gene ontology and cluster analyses, were performed on banked tissue samples of the right kidneys (control kidneys) from cats in the control group and of both kidneys from cats in the RI group, in which unilateral (right) RI had been induced 6 months before the cats were euthanized and the ischemic kidneys (IKs) and contralateral nonischemic kidneys (CNIKs) were harvested. Results for the IKs, CNIKs, and control kidneys were compared to identify potential differentially expressed genes and overrepresented proinflammatory and profibrotic pathways. RESULTS: Genes from the gene ontology pathways of collagen binding (eg, transforming growth factor-ß1), metalloendopeptidase activity (eg, metalloproteinase [MMP]-7, MMP-9, MMP-11, MMP-13, MMP-16, MMP-23B, and MMP-28), chemokine activity, and T-cell migration were overrepresented as upregulated in tissue samples of the IKs versus control kidneys. Genes associated with the extracellular matrix (eg, TIMP-1, fibulin-1, secreted phosphoprotein-1, matrix Gla protein, and connective tissue growth factor) were upregulated in tissue samples from both the IKs and CNIKs, compared with tissues from the control kidneys. CONCLUSIONS AND CLINICAL RELEVANCE: Unilateral ischemic injury differentially altered gene expression in both kidneys, compared with control kidneys. Fibulin-1, secreted phosphoprotein-1, and matrix Gla protein may be candidate biomarkers of active kidney injury in cats.


Asunto(s)
Enfermedades de los Gatos , Insuficiencia Renal Crónica , Animales , Gatos , Isquemia/genética , Isquemia/veterinaria , Riñón , Metaloproteinasa 9 de la Matriz , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/veterinaria
3.
BMC Genomics ; 22(1): 147, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653270

RESUMEN

BACKGROUND: The Beet curly top virus C4 oncoprotein is a pathogenic determinant capable of inducing extensive developmental abnormalities. No studies to date have investigated how the transcriptional profiles differ between plants expressing or not expressing the C4 oncoprotein. RESULTS: We investigated early transcriptional changes in Arabidopsis associated with expression of the Beet curly top virus C4 protein that represent initial events in pathogenesis via a comparative transcriptional analysis of mRNAs and small RNAs. We identified 48 and 94 differentially expressed genes at 6- and 12-h post-induction versus control plants. These early time points were selected to focus on direct regulatory effects of C4 expression. Since previous evidence suggested that the C4 protein regulated the brassinosteroid (BR)-signaling pathway, differentially expressed genes could be divided into two groups: those responsive to alterations in the BR-signaling pathway and those uniquely responsive to C4. Early transcriptional changes that disrupted hormone homeostasis, 18 and 19 differentially expressed genes at both 6- and 12-hpi, respectively, were responsive to C4-induced regulation of the BR-signaling pathway. Other C4-induced differentially expressed genes appeared independent of the BR-signaling pathway at 12-hpi, including changes that could alter cell development (4 genes), cell wall homeostasis (5 genes), redox homeostasis (11 genes) and lipid transport (4 genes). Minimal effects were observed on expression of small RNAs. CONCLUSION: This work identifies initial events in genetic regulation induced by a geminivirus C4 oncoprotein. We provide evidence suggesting the C4 protein regulates multiple regulatory pathways and provides valuable insights into the role of the C4 protein in regulating initial events in pathogenesis.


Asunto(s)
Geminiviridae , Tumores de Planta/virología , Transcriptoma , Proteínas Virales , Geminiviridae/genética , Geminiviridae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Oncogénicas , Proteínas Virales/genética
4.
PLoS One ; 15(5): e0232453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369501

RESUMEN

Soil-based microorganisms assume a direct and crucial role in the promotion of soil health, quality and fertility, all factors known to contribute heavily to the quality and yield of agricultural products. Cover cropping, used in both traditional and organic farming, is a particularly efficient and environmentally favorable tool for manipulating microbiome composition in agricultural soils and has had clear benefits for soil quality and crop output. Several long-term investigations have evaluated the influence of multi-mix (multiple species) cover crop treatments on soil health and microbial diversity. The present study investigated the short-term effects of a seven species multi-mix cover crop treatment on soil nutrient content and microbial diversity, compared to a single-mix cover crop treatment and control. Analysis of 16S sequencing data of isolated soil DNA revealed that the single-mix cover crop treatment decreased overall microbial abundance and diversity, whereas the control and multi-mix treatments altered the overall microbial composition in similar fluctuating trends. Furthermore, we observed significant changes in specific bacteria belonging to the phyla Acidobacteria, Actinobacteria, Planctomycetes, Proteobacteria and Verrucombicrobia for all treatments, but only the single-mix significantly decreased in abundance of the selected bacteria over time. Our findings indicate that the control and multi-mix treatments are better at maintaining overall microbial composition and diversity compared to the single-mix. Further study is required to elucidate the specific difference between the treatment effect of the multi-mix treatment and the control, given that their microbial composition changes over time were similar but they diverge into two populations of unique bacterial types by the end of this short-term study.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Microbiota , Microbiología del Suelo , Agricultura/métodos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , ADN Bacteriano/genética , Fabaceae/crecimiento & desarrollo , Fagopyrum/crecimiento & desarrollo , Microbiota/genética , Nitrógeno/análisis , Filogenia , Poaceae/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Suelo/química
5.
Life Sci Alliance ; 1(6): e201800146, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30519677

RESUMEN

The study of carnivorous plants can afford insight into their unique evolutionary adaptations and their interactions with prokaryotic and eukaryotic species. For Sarracenia (pitcher plants), we identified 64 quantitative trait loci (QTL) for insect-capture traits of the pitchers, providing the genetic basis for differences between the pitfall and lobster-trap strategies of insect capture. The linkage map developed here is based upon the F2 of a cross between Sarracenia rosea and Sarracenia psittacina; we mapped 437 single nucleotide polymorphism and simple sequence repeat markers. We measured pitcher traits which differ between S. rosea and S. psittacina, mapping 64 QTL for 17 pitcher traits; there are hot-spot locations where multiple QTL map near each other. There are epistatic interactions in many cases where there are multiple loci for a trait. The QTL map uncovered the genetic basis for the differences between pitfall- and lobster-traps, and the changes that occurred during the divergence of these species. The longevity and clonability of Sarracenia plants make the F2 mapping population a resource for mapping more traits and for phenotype-to-genotype studies.

6.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29079623

RESUMEN

The critically endangered elkhorn coral (Acropora palmata) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression.IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the association of Vibrio bacteria with WPX.


Asunto(s)
Antozoos/microbiología , Vibriosis/epidemiología , Vibrio/genética , Animales , Arrecifes de Coral , Especies en Peligro de Extinción , Florida/epidemiología , Variación Genética , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S , Agua de Mar/microbiología , Vibrio/clasificación , Vibrio/aislamiento & purificación , Vibrio/patogenicidad
7.
Genome Biol ; 17(1): 194, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671052

RESUMEN

BACKGROUND: DNA methylation is an important feature of plant epigenomes, involved in the formation of heterochromatin and affecting gene expression. Extensive variation of DNA methylation patterns within a species has been uncovered from studies of natural variation. However, the extent to which DNA methylation varies between flowering plant species is still unclear. To understand the variation in genomic patterning of DNA methylation across flowering plant species, we compared single base resolution DNA methylomes of 34 diverse angiosperm species. RESULTS: By analyzing whole-genome bisulfite sequencing data in a phylogenetic context, it becomes clear that there is extensive variation throughout angiosperms in gene body DNA methylation, euchromatic silencing of transposons and repeats, as well as silencing of heterochromatic transposons. The Brassicaceae have reduced CHG methylation levels and also reduced or loss of CG gene body methylation. The Poaceae are characterized by a lack or reduction of heterochromatic CHH methylation and enrichment of CHH methylation in genic regions. Furthermore, low levels of CHH methylation are observed in a number of species, especially in clonally propagated species. CONCLUSIONS: These results reveal the extent of variation in DNA methylation in angiosperms and show that DNA methylation patterns are broadly a reflection of the evolutionary and life histories of plant species.

8.
PLoS One ; 10(8): e0134855, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241739

RESUMEN

We describe restriction site associated RNA sequencing (RARseq), an RNAseq-based genotype by sequencing (GBS) method. It includes the construction of RNAseq libraries from double stranded cDNA digested with selected restriction enzymes. To test this, we constructed six single- and six-dual-digested RARseq libraries from six F2 pitcher plant individuals and sequenced them on a half of a Miseq run. On average, the de novo approach of population genome analysis detected 544 and 570 RNA SNPs, whereas the reference transcriptome-based approach revealed an average of 1907 and 1876 RNA SNPs per individual, from single- and dual-digested RARseq data, respectively. The average numbers of RNA SNPs and alleles per loci are 1.89 and 2.17, respectively. Our results suggest that the RARseq protocol allows good depth of coverage per loci for detecting RNA SNPs and polymorphic loci for population genomics and mapping analyses. In non-model systems where complete genomes sequences are not always available, RARseq data can be analyzed in reference to the transcriptome. In addition to enriching for functional markers, this method may prove particularly useful in organisms where the genomes are not favorable for DNA GBS.


Asunto(s)
Marcadores Genéticos , Técnicas de Genotipaje , Metagenómica/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , ADN Complementario/genética , ADN de Plantas/genética , Biblioteca de Genes , Variación Genética , Haplotipos/genética , Hibridación Genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN de Planta/genética , Mapeo Restrictivo , Sarraceniaceae/genética
9.
BMC Microbiol ; 13: 8, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324647

RESUMEN

BACKGROUND: MAP is a suspected zoonotic pathogen and the causative agent of Johne's Disease in cattle and other ruminant animals. With over $1 billion dollars in loss to the dairy industry due to Johne's Disease, efforts to eliminate or reduce MAP from cattle are of importance. The purpose of this study was to determine if daily intake of probiotics could eliminate or reduce Johne's Disease associated symptoms and pathogenesis by MAP. Post infection, animals are often asymptomatic carriers with limited shedding of the pathogen, proving early detection to be difficult. Disease and symptoms often appear 3-4 years after infection with antibiotic treatment proving ineffective. Symptoms include chronic gastrointestinal inflammation leading to severe weight-loss from poor feed and water intake cause a wasting disease. These symptoms are similar to those found in individuals with Crohn's Disease (CD); MAP has been implicated by not proven to be the causative agent of CD. Probiotics administered to livestock animals, including dairy and beef cattle have demonstrated improvements in cattle performance and health. Our objectives included determining the benefits of Lactobacillus animalis (strain name: NP-51) in MAP infected BALB/c mice by evaluating systemic and gastrointestinal response by the host and gut microbiota. Male and female animals were fed 1×106 CFU/g probiotics in sterile, powdered mouse chow daily and infected with 1 × 107 CFU/ml MAP and compared to controls. Animals were evaluated for 180 days to assess acute and chronic stages of disease, with sample collection from animals every 45 days. MAP concentrations from liver and intestinal tissues were examined using real time-PCR methods and the expression of key inflammatory markers were measured during MAP infection (interferon-gamma [IFN-Υ], Interleukin-1α, IL-12, IL-10, IL-6, and Tumor necrosis factor alpha [TNF-α]). RESULTS: Our results demonstrate administration of probiotics reduces production of IFN-Υ and IL-6 while increasing TNF-α and IL-17 in chronic disease; healthful immune responses that reduce chronic inflammation associated to MAP infection. CONCLUSIONS: We observed that the immune system's response in the presence of probiotics to MAP contributes towards host health by influencing the activity of the immune system and gut microbial populations.


Asunto(s)
Lactobacillus/fisiología , Mycobacterium avium subsp. paratuberculosis/patogenicidad , Paratuberculosis/inmunología , Paratuberculosis/patología , Probióticos/administración & dosificación , Animales , Carga Bacteriana , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Intestinos/microbiología , Hígado/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Microbiology (Reading) ; 158(Pt 2): 353-367, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22053004

RESUMEN

Pseudomonas aeruginosa, which causes serious infections in immunocompromised patients, produces numerous virulence factors, including exotoxin A and the siderophore pyoverdine. As production of these virulence factors is influenced by the host environment, we examined the effect serum has on global transcription within P. aeruginosa strain PAO1 at different phases of growth in an iron-deficient medium. At early exponential phase, serum significantly enhanced expression of 138 genes, most of which are repressed by iron, including pvdS, regA and the pyoverdine synthesis genes. However, serum did not interfere with the repression of these genes by iron. Serum enhanced regA expression in a fur mutant of PAO1 but not in a pvdS mutant. The serum iron-binding protein apotransferrin, but not ferritin, enhanced regA and pvdS expression. However, in PAO1 grown in a chemically defined medium that contains no iron, serum but not apotransferrin enhanced pvdS and regA expression. While complement inactivation failed to eliminate this effect, albumin absorption reduced the effect of serum on pvdS and regA expression in the iron-deficient medium chelexed tryptic soy broth dialysate. Additionally, albumin absorption eliminated the effect of serum on pvdS and regA expression in the chemically defined medium. These results suggest that serum enhances the expression of P. aeruginosa iron-controlled genes by two mechanisms: one through apotransferrin and another one through albumin.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Pseudomonas aeruginosa/metabolismo , Albúmina Sérica/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
11.
Genome Biol ; 11(2): R12, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20128909

RESUMEN

BACKGROUND: Miscanthus x giganteus (Mxg) is a perennial grass that produces superior biomass yields in temperate environments. The essentially uncharacterized triploid genome (3n = 57, x = 19) of Mxg is likely critical for the rapid growth of this vegetatively propagated interspecific hybrid. RESULTS: A survey of the complex Mxg genome was conducted using 454 pyrosequencing of genomic DNA and Illumina sequencing-by-synthesis of small RNA. We found that the coding fraction of the Mxg genome has a high level of sequence identity to that of other grasses. Highly repetitive sequences representing the great majority of the Mxg genome were predicted using non-cognate assembly for de novo repeat detection. Twelve abundant families of repeat were observed, with those related to either transposons or centromeric repeats likely to comprise over 95% of the genome. Comparisons of abundant repeat sequences to a small RNA survey of three Mxg organs (leaf, rhizome, inflorescence) revealed that the majority of observed 24-nucleotide small RNAs are derived from these repetitive sequences. We show that high-copy-number repeats match more of the small RNA, even when the amount of the repeat sequence in the genome is accounted for. CONCLUSIONS: We show that major repeats are present within the triploid Mxg genome and are actively producing small RNAs. We also confirm the hypothesized origins of Mxg, and suggest that while the repeat content of Mxg differs from sorghum, the sorghum genome is likely to be of utility in the assembly of a gene-space sequence of Mxg.


Asunto(s)
Andropogon/genética , Genoma de Planta , ARN de Planta/genética , Sorghum/genética , Andropogon/clasificación , Secuencia de Bases , Centrómero/genética , Cromosomas de las Plantas , Elementos Transponibles de ADN/genética , Genes Duplicados , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ARN , Sorghum/clasificación
12.
BMC Genomics ; 9: 295, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18570655

RESUMEN

BACKGROUND: Cotton fiber is a single-celled seed trichome of major biological and economic importance. In recent years, genomic approaches such as microarray-based expression profiling were used to study fiber growth and development to understand the developmental mechanisms of fiber at the molecular level. The vast volume of microarray expression data generated requires a sophisticated means of data mining in order to extract novel information that addresses fundamental questions of biological interest. One of the ways to approach microarray data mining is to increase the number of dimensions/levels to the analysis, such as comparing independent studies from different genotypes. However, adding dimensions also creates a challenge in finding novel ways for analyzing multi-dimensional microarray data. RESULTS: Mining of independent microarray studies from Pima and Upland (TM1) cotton using double feature selection and cluster analyses identified species-specific and stage-specific gene transcripts that argue in favor of discrete genetic mechanisms that govern developmental programming of cotton fiber morphogenesis in these two cultivated species. Double feature selection analysis identified the highest number of differentially expressed genes that distinguish the fiber transcriptomes of developing Pima and TM1 fibers. These results were based on the finding that differences in fibers harvested between 17 and 24 day post-anthesis (dpa) represent the greatest expressional distance between the two species. This powerful selection method identified a subset of genes expressed during primary (PCW) and secondary (SCW) cell wall biogenesis in Pima fibers that exhibits an expression pattern that is generally reversed in TM1 at the same developmental stage. Cluster and functional analyses revealed that this subset of genes are primarily regulated during the transition stage that overlaps the termination of PCW and onset of SCW biogenesis, suggesting that these particular genes play a major role in the genetic mechanism that underlies the phenotypic differences in fiber traits between Pima and TM1. CONCLUSION: The novel application of double feature selection analysis led to the discovery of species- and stage-specific genetic expression patterns, which are biologically relevant to the genetic programs that underlie the differences in the fiber phenotypes in Pima and TM1. These results promise to have profound impacts on the ongoing efforts to improve cotton fiber traits.


Asunto(s)
Gossypium/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Análisis por Conglomerados , Fibra de Algodón , Interpretación Estadística de Datos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/clasificación , Gossypium/crecimiento & desarrollo , Especificidad de la Especie
13.
Mol Genet Genomics ; 274(4): 428-41, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16187061

RESUMEN

There is an immediate need for a high-density genetic map of cotton anchored with fiber genes to facilitate marker-assisted selection (MAS) for improved fiber traits. With this goal in mind, genetic mapping with a new set of microsatellite markers [comprising both simple (SSR) and complex (CSR) sequence repeat markers] was performed on 183 recombinant inbred lines (RILs) developed from the progeny of the interspecific cross Gossypium hirsutum L. cv. TM1 x Gossypium barbadense L. Pima 3-79. Microsatellite markers were developed using 1557 ESTs-containing SSRs (> or = 10 bp) and 5794 EST-containing CSRs (> or = 12 bp) obtained from approximately 14,000 consensus sequences derived from fiber ESTs generated from the cultivated diploid species Gossypium arboreum L. cv AKA8401. From a total of 1232 EST-derived SSR (MUSS) and CSR (MUCS) primer-pairs, 1019 (83%) successfully amplified PCR products from a survey panel of six Gossypium species; 202 (19.8%) were polymorphic between the G. hirsutum L. and G. barbadense L. parents of the interspecific mapping population. Among these polymorphic markers, only 86 (42.6%) showed significant sequence homology to annotated genes with known function. The chromosomal locations of 36 microsatellites were associated with 14 chromosomes and/or 13 chromosome arms of the cotton genome by hypoaneuploid deficiency analysis, enabling us to assign genetic linkage groups (LG) to specific chromosomes. The resulting genetic map consists of 193 loci, including 121 new fiber loci not previously mapped. These fiber loci were mapped to 19 chromosomes and 11 LG spanning 1277 cM, providing approximately 27% genome coverage. Preliminary quantitative trait loci analysis suggested that chromosomes 2, 3, 15, and 18 may harbor genes for traits related to fiber quality. These new PCR-based microsatellite markers derived from cotton fiber ESTs will facilitate the development of a high-resolution integrated genetic map of cotton for structural and functional study of fiber genes and MAS of genes that enhance fiber quality.


Asunto(s)
Mapeo Cromosómico/métodos , Etiquetas de Secuencia Expresada , Gossypium/química , Gossypium/genética , Repeticiones de Microsatélite/genética , Aneuploidia , Cromosomas de las Plantas , Fibra de Algodón , ADN , ADN Complementario/metabolismo , Diploidia , Ligamiento Genético , Técnicas Genéticas , Genoma de Planta , Modelos Genéticos , Modelos Estadísticos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...