Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 10(6): 1179-1190, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947210

RESUMEN

Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic ß-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.

2.
Chem Sci ; 15(24): 9138-9146, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903212

RESUMEN

In biopolymers such as proteins and nucleic acids, monomer sequence encodes for highly specific intra- and intermolecular interactions that direct self-assembly into complex architectures with high fidelity. This remarkable structural control translates into precise control over the properties of the biopolymer. Polymer scientists have sought to achieve similarly precise control over the structure and function of synthetic assemblies. A common strategy for achieving this goal has been to exploit existing biopolymers, known to associate with specific geometries and stoichiometries, for the assembly of synthetic building blocks. However, such systems are neither scalable nor amenable to the relatively harsh conditions required by various materials science applications, particularly those involving non-aqueous environments. To overcome these limitations, we have synthesized sequence-defined oligocarbamates (SeDOCs) that assemble into duplexes through complementary hydrogen bonds between thymine (T) and diaminotriazine (D) pendant groups. The SeDOC platform makes it simple to incorporate non-hydrogen-bonding sites into an oligomer's array of recognition motifs, thereby enabling an investigation into this unexplored handle for controlling the hybridization of complementary ligands. We successfully synthesized monovalent, divalent, and trivalent SeDOCs and characterized their self-assembly via diffusion ordered spectroscopy, 1H-NMR titration, and isothermal titration calorimetry. Our findings reveal that the binding strength of monovalent oligomers with complementary pendant groups is entropically driven and independent of monomer sequence. The results further show that the hybridization of multivalent oligomers is cooperative, that their binding enthalpy (ΔH) and entropy (TΔS) depend on monomer sequence, and that sequence-dependent changes in ΔH and TΔS occur in tandem to minimize the overall change in binding free energy.

3.
Nat Nanotechnol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844663

RESUMEN

Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.

4.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352588

RESUMEN

Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM.

5.
Nat Rev Chem ; 7(12): 875-888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973830

RESUMEN

Creating the next generation of advanced materials will require controlling molecular architecture to a degree typically achieved only in biopolymers. Sequence-defined polymers take inspiration from biology by using chain length and monomer sequence as handles for tuning structure and function. These sequence-defined polymers can assemble into discrete structures, such as molecular duplexes, via reversible interactions between functional groups. Selectivity can be attained by tuning the monomer sequence, thereby creating the need for chemical platforms that can produce sequence-defined polymers at scale. Developing sequence-defined polymers that are specific for their complementary sequence and achieve their desired binding strengths is critical for producing increasingly complex structures for new functional materials. In this Review Article, we discuss synthetic platforms that produce sequence-defined, duplex-forming oligomers of varying length, strength and association mode, and highlight several analytical techniques used to characterize their hybridization.

6.
ACS Polym Au ; 3(3): 276-283, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37334195

RESUMEN

The encoded precision of biological polymers enables a few simple monomers (e.g., four nucleotides in nucleic acids) to create complex macromolecular structures that accomplish a myriad of functions. Similar spatial precision in synthetic polymers and oligomers can be harnessed to create macromolecules and materials with rich and tunable properties. Recent exciting advances in iterative solid- and solution-phase synthetic strategies have led to the scalable production of discrete macromolecules, which in turn has enabled the study of sequence-dependent material properties. Our recent example of a scalable synthetic strategy using inexpensive vanillin-based monomers to create sequence-defined oligocarbamates (SeDOCs) enabled the preparation of isomeric oligomers with different thermal and mechanical properties. We show that unimolecular SeDOCs also exhibit sequence-dependent dynamic fluorescence quenching that persists from solution to the solid phase. We detail the evidence for this phenomenon and show that changes in fluorescence emissive properties are dependent on macromolecular conformation, which in turn is driven by sequence.

7.
ACS Infect Dis ; 9(2): 322-329, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626184

RESUMEN

Novel antimicrobial agents with potent bactericidal activity are needed to treat infections caused by multidrug-resistant (MDR) extracellular pathogens, such as Pseudomonas aeruginosa. Antimicrobial peptides (AMPs) and peptidomimetics are promising alternatives to traditional antibiotics, but their therapeutic use is limited due to the lack of specificity and resulting off-target effects. The incorporation of an antibody into the drug design would alleviate these challenges by localizing the AMP to the target bacterial cells. Antibody-drug conjugates (ADCs) have already achieved clinical success as anticancer therapeutics, due to the ability of the antibody to deliver the payload directly to the cancer cells. This strategy involves the selective delivery of highly cytotoxic drugs to the target cells, which enables a broad therapeutic window. This platform can be translated to the treatment of infections, whereby an antibody is used to deliver an antimicrobial agent to the bacterial antigen. Herein, we propose the development of an antibody-bactericide conjugate (ABC) in which the antibacterial oligothioetheramide (oligoTEA), BDT-4G, is coupled to an anti-P. aeruginosa antibody via a cleavable linker. The drug BDT-4G was chosen based on its efficacy against a range of P. aeruginosa isolates and its ability to evade mechanisms conferring resistance to the last-resort agent polymyxin B. We demonstrate that the ABC binds to the bacterial cell surface, and following cleavage of the peptide linker, the oligoTEA payload is released and exhibits antipseudomonal activity.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polimixina B , Anticuerpos
8.
Nat Commun ; 13(1): 6439, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307480

RESUMEN

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.


Asunto(s)
COVID-19 , Sarampión , Animales , Humanos , Virus del Sarampión , SARS-CoV-2 , COVID-19/prevención & control , Sarampión/prevención & control , Proteínas Virales de Fusión/metabolismo , Péptidos/farmacología , Macaca fascicularis/metabolismo
9.
Antiviral Res ; 207: 105401, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049554

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a medically relevant tick-borne viral disease caused by the Bunyavirus, Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is endemic to Asia, the Middle East, South-eastern Europe, and Africa and is transmitted in enzootic cycles among ticks, mammals, and birds. Human infections are mostly subclinical or limited to mild febrile illness. Severe disease may develop, resulting in multi-organ failure, hemorrhagic manifestations, and case-fatality rates up to 30%. Despite the widespread distribution and life-threatening potential, no treatments have been approved for CCHF. Antiviral inhibitory peptides, which antagonize viral entry, are licensed for clinical use in certain viral infections and have been experimentally designed against human pathogenic bunyaviruses, with in vitro and in vivo efficacies. We designed inhibitory peptides against CCHFV with and without conjugation to various polyethylene glycol and sterol groups. These additions have been shown to enhance both cellular uptake and antiviral activity. Peptides were evaluated against pseudotyped and wild-type CCHFV via neutralization tests, Nairovirus fusion assays, and cytotoxicity profiling. Four peptides neutralized CCHFV with two of these peptides shown to inhibit viral fusion. This work represents the development of experimental countermeasures for CCHF, describes a nairovirus immunofluorescence fusion assay, and illustrates the utility of pseudotyped CCHFV for the screening of entry antagonists at low containment settings for CCHF.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Orthobunyavirus , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Hemorrágica de Crimea/epidemiología , Humanos , Mamíferos , Péptidos/farmacología , Péptidos/uso terapéutico , Polietilenglicoles/uso terapéutico , Esteroles/uso terapéutico
10.
Res Sq ; 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35677066

RESUMEN

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitors, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, block respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We used a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptides to the respiratory tract and demonstrated the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevented MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional shield which complements vaccination to fight against respiratory infection, presenting a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure, that can be readily translated to human trials.

11.
Viruses ; 14(6)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35746658

RESUMEN

Measles virus (MV) is a highly contagious respiratory virus responsible for outbreaks associated with significant morbidity and mortality among children and young adults. Although safe and effective measles vaccines are available, the COVID-19 pandemic has resulted in vaccination coverage gaps that may lead to the resurgence of measles when restrictions are lifted. This puts individuals who cannot be vaccinated, such as young infants and immunocompromised individuals, at risk. Therapeutic interventions are complicated by the long incubation time of measles, resulting in a narrow treatment window. At present, the only available WHO-advised option is treatment with intravenous immunoglobulins, although this is not approved as standard of care. Antivirals against measles may contribute to intervention strategies to limit the impact of future outbreaks. Here, we review previously described antivirals and antiviral assays, evaluate the antiviral efficacy of a number of compounds to inhibit MV dissemination in vitro, and discuss potential application in specific target populations. We conclude that broadly reactive antivirals could strengthen existing intervention strategies to limit the impact of measles outbreaks.


Asunto(s)
COVID-19 , Sarampión , Antivirales/farmacología , Antivirales/uso terapéutico , Niño , Humanos , Vacuna Antisarampión , Virus del Sarampión , Pandemias , Vacunación
12.
ACS Appl Bio Mater ; 5(3): 1159-1168, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35167257

RESUMEN

The last resort for treating multidrug-resistant (MDR) Pseudomonas aeruginosa and other MDR Gram-negative bacteria is a class of antibiotics called the polymyxins; however, polymyxin-resistant isolates have emerged. In response, antimicrobial peptides (AMPs) and their synthetic mimetics have been investigated as alternative therapeutic options. Oligothioetheramides (oligoTEAs) are a class of synthetic, sequence-defined oligomers composed of N-allylacrylamide monomers and an abiotic dithiol backbone that is resistant to serum degradation. Characteristic of other AMP mimetics, the precise balance between charge and hydrophobicity has afforded cationic oligoTEAs potent antimicrobial activity, particularly for the compound BDT-4G, which consists of a 1,4-butanedithiol backbone and guanidine pendant groups, the latter of which provides a cationic charge at physiological pH. However, the activity and mechanism of cationic oligoTEAs against MDR Gram-negative isolates have yet to be fully investigated. Herein, we demonstrated the potent antimicrobial activity of BDT-4G against clinical isolates of P. aeruginosa with a range of susceptibility profiles, assessed the kinetics of bactericidal activity, and further elucidated its mechanism of action. Activity was also evaluated against a panel of polymyxin-resistant isolates, including intrinsically-resistant species. We demonstrate that BDT-4G can evade some of the mechanisms conferring resistance to polymyxin B and thus may have therapeutic potential.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología , Pseudomonas aeruginosa
13.
Chembiochem ; 22(17): 2697-2702, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34227209

RESUMEN

Due to the increasing prominence of antibiotic resistance, novel drug discovery and delivery approaches targeting bacteria are essential. In this work we evaluate a prodrug design to improve the cytotoxic profile of polycationic oligothioetheramides (oligoTEAs), which are promising antimicrobials. Herein we chemically modify the oligoTEA, PDT-4G, with a polyethylene glycol (PEG) and show that 1, 2, and 5 kDa PEGs mitigate cytotoxicity. As PEGylation reduces antibacterial activity, we evaluate two peptide linkers which, unlike oligoTEAs, are susceptible to proteolytic cleavage in serum. To gain insight into the prodrug reactivation, two linkers were tested, the 5-residue peptide sequence LMPTG, and the dipeptide sequence VC-PABC. In the presence of 20 % serum, prodrugs made with the VC-PABC linker successfully inhibited bacterial growth. Overall, we observed reactivation of oligoTEAs facilitated by serum protease cleavage of the peptide linkers. This work opens the door to the future design of antimicrobial prodrugs with tunable release profiles.


Asunto(s)
Profármacos
14.
ACS Nano ; 15(8): 12794-12803, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34291895

RESUMEN

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.


Asunto(s)
Virus del Sarampión , Sarampión , Humanos , Proteínas Virales de Fusión , Antivirales/farmacología , Antivirales/química , Péptidos/farmacología , Péptidos/química , Lípidos/farmacología
15.
Annu Rev Chem Biomol Eng ; 12: 241-261, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33730514

RESUMEN

Macromolecule-drug conjugates (MDCs) occupy a critical niche in modern pharmaceuticals that deals with the assembly and combination of a macromolecular carrier, a drug cargo, and a linker toward the creation of effective therapeutics. Macromolecular carriers such as synthetic biocompatible polymers and proteins are often exploited for their inherent ability to improve drug circulation, prevent off-target drug cytotoxicity, and widen the therapeutic index of drugs. One of the most significant challenges in MDC design involves tuning their drug release kinetics to achieve high spatiotemporal precision. This level of control requires a thorough qualitative and quantitative understanding of the bond cleavage event. In this review, we highlight specific research findings that emphasize the importance of establishing a precise structure-function relationship for MDCs that can be used to predict their bond cleavage and drug release kinetic parameters.


Asunto(s)
Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Portadores de Fármacos , Liberación de Fármacos , Cinética , Polímeros
16.
Science ; 371(6536): 1379-1382, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33597220

RESUMEN

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Asunto(s)
COVID-19/transmisión , Lipopéptidos/administración & dosificación , Fusión de Membrana/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteínas Virales de Fusión/administración & dosificación , Internalización del Virus/efectos de los fármacos , Administración Intranasal , Animales , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Diseño de Fármacos , Hurones , Lipopéptidos/química , Lipopéptidos/farmacocinética , Lipopéptidos/farmacología , Ratones , Profilaxis Pre-Exposición , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Distribución Tisular , Células Vero , Inhibidores de Proteínas Virales de Fusión/química , Inhibidores de Proteínas Virales de Fusión/farmacocinética , Inhibidores de Proteínas Virales de Fusión/farmacología
17.
Biomacromolecules ; 22(2): 984-992, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33428376

RESUMEN

The rise of multidrug-resistant (MDR) "superbugs" has created an urgent need to develop new classes of antimicrobial agents to target these organisms. Oligothioetheramides (oligoTEAs) are a unique class of antimicrobial peptide (AMP) mimetics with one promising compound, BDT-4G, displaying potent activity against MDR Pseudomonas aeruginosa clinical isolates. Despite widely demonstrated potency, BDT-4G and other AMP mimetics have yet to enjoy broad preclinical success against systemic infections, primarily due to their cytotoxicity. In this work, we explore a prodrug strategy to render BDT-4G inactive until it is exposed to an enzyme secreted by the targeted bacteria. The prodrug consists of polyethylene glycol (PEG) conjugated to BDT-4G by a peptide substrate. PEG serves to inactivate and reduce the toxicity of BDT-4G by masking its cationic charge and antimicrobial activity is recovered following site-specific cleavage of the short peptide linker by LasA, a virulence factor secreted by P. aeruginosa. This approach concurrently reduces cytotoxicity by greater than 1 order of magnitude in vitro and provides species specificity through the identity of the cleavable linker.


Asunto(s)
Antiinfecciosos , Profármacos , Antibacterianos , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Pruebas de Sensibilidad Microbiana , Polietilenglicoles , Profármacos/farmacología , Pseudomonas aeruginosa , Especificidad de la Especie
18.
bioRxiv ; 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33173865

RESUMEN

Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. ONE-SENTENCE SUMMARY: A dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo .

19.
Org Biomol Chem ; 18(32): 6364-6377, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32760955

RESUMEN

The thiol-Michael addition is a popular, selective, high-yield "click" reaction utilized for applications ranging from small-molecule synthesis to polymer or surface modification. Here, we combined experimental and quantum mechanical modeling approaches using density functional theory (DFT) to examine the thiol-Michael reaction of N-allyl-N-acrylamide monomers used to prepare sequence-defined oligothioetheramides (oligoTEAs). Experimentally, the reaction was evaluated with two fluorous tagged thiols and several monomers at room temperature (22 °C and 40 °C). Using the Eyring equation, the activation energies (enthalpies) were calculated, observing a wide range of energy barriers ranging from 28 kJ mol-1 to 108 kJ mol-1 within the same alkene class. Computationally, DFT coupled with the Nudged Elastic Band method was used to calculate the entire reaction coordinate of each monomer reaction using the B97-D3 functional and a hybrid implicit-explicit methanol solvation approach. The thiol-Michael reaction is traditionally rate-limited by the propagation or chain-transfer steps. However, our test case with N-acrylamides and fluorous thiols revealed experimental and computational data produced satisfactory agreement only when we considered a previously unconsidered step that we termed "product decomplexation", which occurs as the product physically dissociates from other co-reactants after chain transfer. Five monomers were investigated to support this finding, capturing a range of functional groups varying in alkyl chain length (methyl to hexyl) and aromaticity (benzyl and ethylenephenyl). Increased substrate alkyl chain length increased activation energy, explained by the inductive effect. Aromatic ring-stacking configurations significantly impacted the activation energy and contributed to improved molecular packing density. Hydrogen-bonding between reactants increased the activation energy emphasizing the rate-limitation of the product decomplexation. Our findings begin to describe a new structure-kinetic relationship for thiol-Michael acceptors to enable further design of reactive monomers for synthetic polymers and biomaterials.


Asunto(s)
Acrilamidas/química , Compuestos de Sulfhidrilo/química , Cinética , Estructura Molecular , Temperatura
20.
J Am Chem Soc ; 142(14): 6729-6736, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32202773

RESUMEN

To date, scalability limitations have hindered the exploration and application of sequence-defined polymers in areas such as synthetic plastics, fibers, rubbers, coatings, and composites. Additionally, the impact of sequence on the properties of cross-linked networks remains largely unknown. To address the need for synthetic methods to generate sequence-defined materials in gram quantities, we developed a strategy involving inexpensive and readily functional vanillin-based monomers to assemble sequence-defined polyurethane oligomers via sequential reductive amination and carbamation. Three oligomers were synthesized with monomer sequence precisely dictated by the placement of reactive side chains during the reductive amination reaction. Avoiding excessive chromatographic purification and solid- or liquid-phase supports enabled synthesis of sequence-defined oligomers on the gram-scale. Remarkably, sequence was shown to influence network topology upon cross-linking, as evidenced by sequence-dependent rubbery moduli values. This work provides one of the first examples of a scalable synthetic route toward sequence-defined thermosets that exhibit sequence-dependent properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...