Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411380, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140843

RESUMEN

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages, most importantly it allows for the spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate based systems.

2.
Angew Chem Int Ed Engl ; 63(21): e202319321, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511339

RESUMEN

Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.

3.
Chem Sci ; 15(6): 2062-2073, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332822

RESUMEN

Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology. The Contact Ion Pair (CIP) has been recognized as an important intermediate in the uncaging process, but the key influence of its fate on the quantum yield has not been explored yet, limiting our ability to design improved PPGs. Here, we demonstrate that the CIP escape mechanism of PPGs is crucial for determining their payload- and solvent-dependent photolysis QY, and illustrate that an intramolecular type of CIP escape is superior over diffusion-dependent CIP escape. Furthermore, we report a strong correlation of the photolysis QY of a range of coumarin PPGs with the DFT-calculated height of all three energy barriers involved in the photolysis reaction, despite the vastly different mechanisms of CIP escape that these PPGs exhibit. Using the insights obtained through our analysis, we were able to predict the photolysis QY of a newly designed PPG with particularly high accuracy. The level of understanding of the factors determining the QY of PPGs presented here will move the ever-expanding field of PPG applications forward and provides a blueprint for the development of PPGs with QYs that are independent of payload-topology and solvent polarity.

4.
EES Catal ; 2(1): 262-275, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38222062

RESUMEN

Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.

5.
Chem Commun (Camb) ; 60(5): 578-581, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38095129

RESUMEN

Photocleavable protecting groups (PPGs) enable the light-induced, spatiotemporal control over the release of a payload of interest. Two fundamental challenges in the design of new, effective PPGs are increasing the quantum yield (QY) of photolysis and red-shifting the absorption spectrum. Here we describe the combination of two photochemical strategies for PPG optimization in one molecule, resulting in significant improvements in both these crucial parameters. Furthermore, we for the first time identify the process of photo-isomerization to strongly influence the QY of photolysis of a PPG and identify the cis-isomer as the superior PPG.

6.
Chem Sci ; 14(27): 7465-7474, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37449069

RESUMEN

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by high selectivity, external non-invasive control with light and biocompatibility. The conventionally used PQ compounds show limited reactivity, which hinders the overall efficiency of the PQ-ERA reaction. To address this issue, we present in this study a simple strategy to boost the reactivity of the PQ triplet state to further enhance the efficiency of the PQ-ERA reaction, enabled by thiophene substitution at the 3-position of the PQ scaffold. Our investigations show that this substitution pattern significantly increases the population of the reactive triplet state (3ππ*) during excitation of 3-thiophene PQs. This results in a superb photoreaction quantum yield (ΦP, up to 98%), high second order rate constants (k2, up to 1974 M-1 s-1), and notable oxygen tolerance for the PQ-ERA reaction system. These results have been supported by both experimental transient absorption data and theoretical calculations, providing further evidence for the effectiveness of this strategy, and offering fine prospects for fast and efficient photoclick transformations.

7.
J Am Chem Soc ; 145(31): 17211-17219, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498188

RESUMEN

Butenolides are a class of 5-membered lactones that hold great potential as bio-based monomers to replace oil-derived acrylates, of which they are cyclic analogues. Despite this structural resemblance, the reactivity of the unsaturated ester moiety of electron-poor butenolides leans toward that of maleic anhydride, another essential monomer that does not homopolymerize but copolymerizes in a highly alternating fashion with polarized electron-rich comonomers. By studying the reactivity of 5-methoxy and 5-acyloxy butenolides through a combination of kinetics and density functional theory (DFT) experiments, we explain why electron-poor butenolides constitute a missing link between acrylates and maleic anhydride in radical polymerization.

8.
Chem Sci ; 13(33): 9713-9718, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091916

RESUMEN

Chiral optical switches, which use light to control chirality in a reversible manner, offer unique properties and fascinating prospects in the areas of molecular switching and responsive systems, new photochromic materials and molecular data processing and storage. Herein, we report visible light responsive chiroptical switches based on tetrahedral boron coordination towards an easily accessible hydrazone ligand and optically pure BINOL. Upon instalment of a non-planar dibenzo[a,d]-cycloheptene moiety in the hydrazone ligand's lower half, the enantiopure boron complex shows major chiroptical changes in the CD read-out after visible light irradiation. The thermal isomerization barrier in these chiroptical switching systems showed to be easily adjustable by the introduction of substituents onto the olefinic bond of the cycloheptene ring, giving profound control over their thermal stability. The control over their thermal stability in combination with excellent reversibility, photochemical properties and overall robustness of the complexes makes these BINOL-derived chiroptical switches attractive candidates for usage in advanced applications, e.g. photonic materials and nanotechnology.

9.
J Am Chem Soc ; 144(27): 12421-12430, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35775744

RESUMEN

Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY). Here, we describe a novel and general approach to greatly increase the photolysis QY of heterolytic PPGs through stabilization of an intermediate chromophore cation. When applied to coumarin PPGs, our strategy resulted in systems possessing an up to a 35-fold increase in QY and a convenient fluorescent readout during their uncaging, all while requiring the same number of synthetic steps for their preparation as the usual coumarin systems. We demonstrate that the same QY engineering strategy applies to different photolysis payloads and even different classes of PPGs. Furthermore, analysis of the DFT-calculated energy barriers in the first singlet excited state reveals valuable insights into the important factors that determine photolysis efficiency. The strategy reported herein will enable the development of efficient PPGs tailored for many applications.


Asunto(s)
Cumarinas , Cationes , Fotólisis
10.
Angew Chem Int Ed Engl ; 61(27): e202201308, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181979

RESUMEN

Photolabile Protecting Groups (PPGs) are molecular tools used, for example, in photopharmacology for the activation of drugs with light, enabling spatiotemporal control over their potency. Yet, red-shifting of PPG activation wavelengths into the NIR range, which penetrates the deepest in tissue, has often yielded inefficient or insoluble molecules, hindering the use of PPGs in the clinic. To solve this problem, we report herein a novel concept in PPG design, by transforming clinically-applied NIR-dyes with suitable molecular orbital configurations into new NIR-PPGs using computational approaches. Using this method, we demonstrate how Cy7, a class of NIR dyes possessing ideal properties (NIR-absorption, high molecular absorptivity, excellent aqueous solubility) can be successfully converted into Cy7-PPG. We report a facile synthesis towards Cy7-PPG from accessible precursors and confirm its excellent properties as the most redshifted oxygen-independent NIR-PPG to date (λmax =746 nm).


Asunto(s)
Colorantes , Oxígeno , Fotoquímica
11.
Cell Chem Biol ; 28(8): 1145-1157.e6, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33689684

RESUMEN

Dysregulated pre-mRNA splicing is an emerging Achilles heel of cancers and myelodysplasias. To expand the currently limited portfolio of small-molecule drug leads, we screened for chemical modulators of the U2AF complex, which nucleates spliceosome assembly and is mutated in myelodysplasias. A hit compound specifically enhances RNA binding by a U2AF2 subunit. Remarkably, the compound inhibits splicing of representative substrates and stalls spliceosome assembly at the stage of U2AF function. Computational docking, together with structure-guided mutagenesis, indicates that the compound bridges the tandem U2AF2 RNA recognition motifs via hydrophobic and electrostatic moieties. Cells expressing a cancer-associated U2AF1 mutant are preferentially killed by treatment with the compound. Altogether, our results highlight the potential of trapping early spliceosome assembly as an effective pharmacological means to manipulate pre-mRNA splicing. By extension, we suggest that stabilizing assembly intermediates may offer a useful approach for small-molecule inhibition of macromolecular machines.


Asunto(s)
Precursores del ARN/efectos de los fármacos , Empalme del ARN/efectos de los fármacos , ARN Neoplásico/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Empalme U2AF/antagonistas & inhibidores , Femenino , Células HEK293 , Humanos , Células K562 , Simulación del Acoplamiento Molecular , Estructura Molecular , Precursores del ARN/genética , Empalme del ARN/genética , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
14.
Org Lett ; 22(11): 4350-4354, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32412769

RESUMEN

A novel metal-free double-annulation cascade for the construction of unusual fused heterocyclic systems is described. This simple protocol enables the sequential assembly of two rings in one pot from two simple precursors. Acidic conditions promote the condensation and the intramolecular alkynyl Prins reaction of an enyne or arenyne alcohol with a cyclic hemiaminal to form a five-, six-, or seven-membered oxacycle followed by a seven- or eight-membered azacycle. In this transformation, chemical complexity is rapidly generated with the formation of three new bonds (one C-O, one C-C, and one C-N) in one synthetic operation. The strategy is modular and relatively general, providing access to a series of unique fused bicyclic scaffolds.

15.
Org Lett ; 22(10): 4010-4015, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32352794

RESUMEN

A stereocontrolled halo-Prins/halo-Nazarov cyclization protocol is reported, where chiral information from a secondary alcohol is relayed through several intermediates yielding halocyclopentene products diastereoselectively. An enantiopure product is obtained when a nonracemic secondary alcohol is used. Experimental and computational studies are described, enabling the design and synthesis of systems that ionize and cyclize with >95% chirality transfer through a mechanism involving the creation and preservation of transient helical chirality in a pentadienyl cation intermediate. First, a diastereoselective alkynyl Prins cyclization is executed to synthesize a conformationally distorted dihydropyran intermediate with a curved backbone and high reactivity. This chiral precursor adopts a specific helical alignment early in the subsequent cationic ionization/halo-Nazarov cyclization process, dictating the direction of conrotation in the electrocyclization. Notably, despite the ablation of an sp3 stereogenic center during ionization, the low halo-Nazarov barrier enables efficient capture of a cationic intermediate with dynamic conformational chirality. The ionization and electrocyclization thus occur with "memory of chirality".

16.
Biochemistry ; 59(12): 1289-1297, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32167292

RESUMEN

Cobalt-mimochrome VI*a (CoMC6*a) is a synthetic mini-protein that catalyzes aqueous proton reduction to hydrogen (H2). In buffered water, there are multiple possible proton donors, complicating the elucidation of the mechanism. We have found that the buffer pKa and sterics have significant effects on activity, evaluated via cyclic voltammetry (CV). Protonated buffer is proposed to act as the primary proton donor to the catalyst, specifically through the protonated amine of the buffers that were tested. At a constant pH of 6.5, catalytic H2 evolution in the presence of buffer acids with pKa values ranging from 5.8 to 11.6 was investigated, giving rise to a potential-pKa relationship that can be divided into two regions. For acids with pKa values of ≤8.7, the half-wave catalytic potential (Eh) changes as a function of pKa with a slope of -128 mV/pKa unit, and for acids with pKa of ≥8.7, Eh changes as a function of pKa with a slope of -39 mV/pKa unit. In addition, a series of buffer acids were synthesized to explore the influence of steric bulk around the acidic proton on catalysis. The catalytic current in CV shows a significant decrease in the presence of the sterically hindered buffer acids compared to those of their parent compounds, also consistent with the added buffer acid acting as the primary proton donor to the catalyst and showing that acid structure in addition to pKa impacts activity. These results demonstrate that buffer acidity and structure are important considerations when optimizing and evaluating systems for proton-dependent catalysis in water.


Asunto(s)
Cobalto/química , Deuteroporfirinas/química , Hidrógeno/química , Metaloproteínas/química , Protones , Tampones (Química) , Catálisis , Concentración de Iones de Hidrógeno , Agua/química
17.
J Am Chem Soc ; 141(13): 5461-5469, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30900884

RESUMEN

In this report, we describe a halo-Prins/aryl halo-Nazarov cyclization strategy that employs readily available starting materials, inexpensive reagents, and convenient reaction procedures to generate functionalized haloindenes and indanones. The scope and limitations of the method are outlined, demonstrating that aromatic systems readily react under mild, catalytic conditions when this strategy is implemented. Furthermore, we present both experimental and computational data supporting the notion that cyclizations of 3-halopentadienyl cationic intermediates are more kinetically accessible, as well as more thermodynamically favorable, than cyclizations of the analogous 3-oxypentadienyl cationic systems. The energetic advantage imparted by the halo-Nazarov cyclization design was found to be especially valuable in the cyclizations of arylallyl cationic intermediates, which require disruption of aromaticity.

18.
J Am Chem Soc ; 141(1): 118-122, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571090

RESUMEN

An expedient strategy for the synthesis of polycyclic small molecules is described. The method first joins together two achiral building blocks (an enyne and an aldehyde or a ketone) using an alkynyl halo-Prins protocol. Then, in the same reaction vessel, acidic conditions initiate a cationic cascade that includes a stereospecific halo-Nazarov electrocyclization and a diastereoselective Friedel-Crafts allylation. The entire sequence forms three carbon-carbon bonds and a carbon-halogen bond, generating halocyclopentene adducts in one pot from simple precursors. The process occurs with excellent diastereocontrol, providing highly functionalized polycycles containing three tertiary or quaternary stereogenic centers in a linear array. It is even possible to install three contiguous all-carbon quaternary centers using this method.

19.
Cannabis Cannabinoid Res ; 3(1): 136-151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29992186

RESUMEN

Introduction: Δ9-Tetrahydrocannabinol (THC), the principle psychoactive ingredient in Cannabis, is widely used for its therapeutic effects in a large variety of diseases, but it also has numerous neurological side effects. The cannabinoid receptors (CBRs) are responsible to a large extent for these, but not all biological responses are mediated via the CBRs. Objectives: The identification of additional target proteins of THC to enable a better understanding of the (adverse) physiological effects of THC. Methods: In this study, a chemical proteomics approach using a two-step photoaffinity probe is applied to identify potential proteins that may interact with THC. Results: Photoaffinity probe 1, containing a diazirine as a photocrosslinker, and a terminal alkyne as a ligation handle, was synthesized in 14 steps. It demonstrated high affinity for both CBRs. Subsequently, two-step photoaffinity labeling in neuroblastoma cells led to identification of four potential novel protein targets of THC. The identification of these putative protein hits is a first step towards a better understanding of the protein interaction profile of THC, which could ultimately lead to the development of novel therapeutics based on THC.

20.
Angew Chem Int Ed Engl ; 56(47): 15030-15034, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29065241

RESUMEN

A diastereoselective two-step strategy for the synthesis of densely functionalized 1-halocyclopentenes with several chiral centers has been developed. In the first step, a multicomponent alkynyl halo-Prins reaction joins an enyne, a carbonyl derivative, and either a chloride, bromide, or iodide to produce a cyclic ether intermediate. In the subsequent step, the intermediate is ionized to generate a halopentadienyl cation, which undergoes an interrupted halo-Nazarov cyclization. The products contain three new contiguous stereogenic centers, generated with a high level of stereocontrol, as well as a vinyl halide allowing for additional functionalization. The strategy creates two new carbon-carbon bonds, one carbon-halide bond, and one carbon-oxygen bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA