Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238227

RESUMEN

Nowadays, despite all the conducted research and the provided efforts in advancing the healthcare sector, there is a strong need to rapidly and efficiently diagnose various diseases. The complexity of some disease mechanisms on one side and the dramatic life-saving potential on the other side raise big challenges for the development of tools for the early detection and diagnosis of diseases. Deep learning (DL), an area of artificial intelligence (AI), can be an informative medical tomography method that can aid in the early diagnosis of gallbladder (GB) disease based on ultrasound images (UI). Many researchers considered the classification of only one disease of the GB. In this work, we successfully managed to apply a deep neural network (DNN)-based classification model to a rich built database in order to detect nine diseases at once and to determine the type of disease using UI. In the first step, we built a balanced database composed of 10,692 UI of the GB organ from 1782 patients. These images were carefully collected from three hospitals over roughly three years and then classified by professionals. In the second step, we preprocessed and enhanced the dataset images in order to achieve the segmentation step. Finally, we applied and then compared four DNN models to analyze and classify these images in order to detect nine GB disease types. All the models produced good results in detecting GB diseases; the best was the MobileNet model, with an accuracy of 98.35%.

2.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679770

RESUMEN

Distributed wireless sensor networks (WSNs) have been implemented in multiple applications. Those networks are intended to support the quality of operations and enhance applications' productivity and safety. WSNs are constructed of a large amount of sensor nodes that are battery powered. Typically, wireless sensors are deployed in complex terrain which makes battery replacement extremely difficult. Therefore, it is critical to adopt an energy sustainability approach to enhance the lifetime of each sensor node since each node contributes to the lifetime of the entire WSN. In this work, we propose an approach to reduce power consumption in wireless sensors. The approach addresses power reduction in a sensor node at the sensing level, as well as the communication level. First, we propose configuring the microcontroller of the sensor to conserve energy based on the performed tasks. Then, we implement an interface to reduce consumed power by the radio module. Based on the approach, we carried out field experiments and we measure the improvement of power-consumption reduction. The results show that the approach contributes to saving up to 50% of the wasted energy at the sensor node and it improves communication reliability especially when the number of sensors in a network scales.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Reproducibilidad de los Resultados , Algoritmos , Suministros de Energía Eléctrica
3.
Comput Intell Neurosci ; 2022: 1874436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990150

RESUMEN

The smart city is an emerging concept that is based on the integration of various electronic devices and citizens that enhance the flow of information. IoT is an integral part for next generation wireless network infrastructure for acting as an interface of collecting data and controlling delivery of message which are using in smart cities. In this paper, an IoT-oriented relay assisted MIMO for beyond the fifth-generation wireless network system is proposed. The proposed system provides higher capacity and lower BER. The proposed system's BER results are compared with various combinations of transmission and receiving antennas at source, relay, and destination. It is found from BER performance that the developed scheme with relay does provide 1-17 dB gain with respect to direct connection. It is also found from mathematical analysis and simulation results that this scheme provides 3 to 9 b/s/Hz improvement in performance of capacity at 5 to 10 dB by adding a different combination of STBC and VBLAST. Simulation results are also presented to demonstrate the diversity and multiplexing gain that is a key to providing high data rates with reliable communication with many interferences for the IoT system. This system can also be used for massive antennas-based IoT system by raising the number of transmitting and receiving antennas with proposed encoding and decoding techniques explained in this paper.


Asunto(s)
Electrónica , Ciudades , Simulación por Computador
4.
Sensors (Basel) ; 21(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071556

RESUMEN

The theory of modern organizations considers emotional intelligence to be the metric for tools that enable organizations to create a competitive vision. It also helps corporate leaders enthusiastically adhere to the vision and energize organizational stakeholders to accomplish the vision. In this study, the one-dimensional convolutional neural network classification model is initially employed to interpret and evaluate shifts in emotion over a period by categorizing emotional states that occur at particular moments during mutual interaction using physiological signals. The self-organizing map technique is implemented to cluster overall organizational emotions to represent organizational competitiveness. The analysis of variance test results indicates no significant difference in age and body mass index for participants exhibiting different emotions. However, a significant mean difference was observed for the blood volume pulse, galvanic skin response, skin temperature, valence, and arousal values, indicating the effectiveness of the chosen physiological sensors and their measures to analyze emotions for organizational competitiveness. We achieved 99.8% classification accuracy for emotions using the proposed technique. The study precisely identifies the emotions and locates a connection between emotional intelligence and organizational competitiveness (i.e., a positive relationship with employees augments organizational competitiveness).


Asunto(s)
Emociones , Redes Neurales de la Computación , Algoritmos , Nivel de Alerta , Respuesta Galvánica de la Piel , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA