Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 14(1): 14571, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914599

RESUMEN

The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers' performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Lengua , Humanos , Lengua/diagnóstico por imagen , Lengua/patología , Masculino , Femenino , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Análisis de Ondículas , Máquina de Vectores de Soporte , Glucemia/análisis , Algoritmos
2.
Sci Rep ; 14(1): 14026, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890414

RESUMEN

The excessive accumulation of sodium chloride (NaCl) in soil can result in soil salinity, which poses a significant challenge to plant growth and crop production due to impaired water and nutrient uptake. On the other hand, hydropriming (WP) and low level of NaCl priming can improve the germination of seeds, chlorophyll contents, oil and seed yield in plants. That's why this study investigates the impact of hydro and different levels of NaCl (0.5, 1.0, 1.5 and 2.0%) priming, as pre-treatment techniques on canola seeds germination, growth and yield of two varieties Punjab and Faisal Canola. Results showed that, WP performed significant best for increase in germination (~ 20 and ~ 22%) and shoot length (~ 6 and ~ 10%) over non-priming (NP) in Punjab Canola and Faisal Canola respectively. A significant increase in plant height (~ 6 and ~ 7%), root length (~ 1 and ~ 7%), shoot fresh weight (~ 5 and ~ 7%), root fresh weight (~ 6 and ~ 7%) in Punjab Canola and Faisal Canola respectively. It was also observed that plants under WP and 0.5%NaCl priming were also better in production of seed yield per plant, oil contents, silique per plant, seeds per silique, and branches per plant chlorophyll contents and leaf relative water contents over NP. In conclusion, WP and 0.5%NaCl has potential to improve the germination, growth, yield and oil attributes of canola compared to non-priming, 1.0%NaCl priming, 1.5%NaCl priming and 2.0%NaCl priming.


Asunto(s)
Brassica napus , Germinación , Semillas , Cloruro de Sodio , Germinación/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Brassica napus/efectos de los fármacos , Cloruro de Sodio/farmacología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/efectos de los fármacos , Clorofila/metabolismo , Agua/metabolismo , Salinidad , Suelo/química
3.
Environ Res ; : 119487, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917932

RESUMEN

The nutraceutical value, and physicochemical profile as well as anti-inflammatory activity potential of Odonthalia floccose and Odonthalia dentata (red macroalgae) dry biomass were investigated in this study. Proximate composition study results revealed that the dry biomass of O. floccose and O. dentae were found to be as ash: 9.11 & 8.7 g 100 g-1, moisture: 8.24 & 8.1 g 100 g-1, total fat: 6.9 & 7.2 g 100 g-1, protein: 24.52 & 25.6 g 100 g-1, and total carbohydrate/polysaccharides: 53.84 & 48.85 g 100 g-1 of dry weight biomass respectively. Both algae biomass contain considerable quantity of minerals (Fe, Cu, Mg, and Zn). Furthermore, the major saturated fatty acids (6.24 & 5.82 g FAME 100 g-1 of total fat of O. floccose and O. dentate) (ΣFAs) present in the test algae were stearic acid, palmitic acid, and margaric acids. O. floccose and O. dentata also contain remarkable protein composition profile that compiled with considerable quantity of essential and non-essential amino acids. The vitamins such as vitamin A, B1, B2, B3, B6, B9, C, and E of O. floccose and O. dentate biomass were also identified at sufficient quantity level. The swelling capacity (SWC), water holding capacity (WHC), and oil holding capacity (OHC) properties of O. floccose and O. dentate at various temperature conditions (25 and 37 ᵒC) were found to be 8.11 & 7.02 mL g-1 and 8.95 & 7.55 mL g-1, 5.1 & 4.87 and 4.8 & 4.1 mL g-1, as well as 2.11 & 1.81 and 1.96 & 1.89 mL g-1 respectively. Among these two marine red macroalgae samples, the O. dentate showed better anti-inflammatory activity than O. floccose at 150 µg mL-1 dosage. Thus, this O. floccose and O. dentate biomass can be considerable as nutritional supplement and pharmaceutical product development related research.

4.
Environ Res ; 252(Pt 3): 118983, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692421

RESUMEN

Environmental monitoring of mercury (Hg2+) ions has become increasingly important as a result of their detrimental effects on biological organisms at all levels. To recognize toxic metal ions, utmost effort has been devoted to developing new materials that are highly selective, ultra-sensitive, and provide rapid response. In this context, a new chemosensor, 2-imino [N - (N-amido phenyl)]-6-methoxy-3-carbethoxy quinoline (L), has been synthesized by combining 2-formyl-6-methoxy-3-carbethoxy quinoline and benzhydrazide and it has been extensively characterized by NMR, FTIR, ESI-Mass and SCXRD analysis. Probe L has excellent specificity and sensitivity toward Hg2+ ions in semi-aqueous solutions, with a detection limit of 0.185 µM, regardless of the presence of other interfering cations. Chromogenic behavior was demonstrated by the L when it changed the color of the solution from colorless to light yellow, a change that can be observed visually. The probe L forms a 1:1 stochiometric complex with an estimated association constant (Ka) of 6.74 × 104 M-1. The 1H NMR change and density functional theory calculations were analyzed to improve our understanding of the sensing mechanism. Also, an inexpensive and simple paper-based test kit has been developed for the on-site detection of mercury ions in water samples.


Asunto(s)
Mercurio , Quinolinas , Bases de Schiff , Mercurio/análisis , Mercurio/química , Bases de Schiff/química , Quinolinas/química , Quinolinas/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos
5.
Biomed Chromatogr ; : e5901, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816948

RESUMEN

Oral bioavailability of glibenclamide (Glb) was appreciably improved by the formation of an amorphous solid dispersion with Poloxamer-188 (P-188). Poloxamer-188 substantially enhanced the solubility and thereby the dissolution rate of the biopharmaceutics classification system (BCS) class II drug Glb and simultaneously exhibited a better stabilizing effect of the amorphous solid dispersion prepared by the solvent evaporation method. The physical state of the dispersed Glb in the polymeric matrix was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscope and Fourier transform infrared studies. In vitro drug release in buffer (pH 7.2) revealed that the amorphous solid dispersion at a Glb-P-188 ratio of 1:6 (SDE4) improved the dissolution of Glb by 90% within 3 h. A pharmacokinetic study of the solid dispersion formulation SDE4 in Wistar rats showed that the oral bioavailability of the drug was greatly increased as compared with the market tablet formulation, Daonil®. The formulation SDE4 resulted in an AUC0-24h ~2-fold higher. The SDE4 formulation was found to be stable during the study period of 6 months.

6.
Heliyon ; 10(7): e28296, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560133

RESUMEN

The current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at p < 0.05 level) due to the use of As-rich water for cooking and soaking purposes. Whereas As content in CR and SCR was reduced significantly due to the use of As-free water for cooking and soaking purposes. The use of As-free water (AFW) also enhanced the Fe content in CR. The overnight soaking of rice invariably enhanced the Fe content despite the use of As-contaminated water in SCR however, comparatively in lesser amount than As-free rice. In the studied area, due to consumption of As-rich CR and SCR children are more vulnerable to health hazards than adults. Consumption of SCR (prepared with AFW) could be an effective method to minimize As transmission and Fe enrichment among consumers.

8.
J Environ Manage ; 356: 120556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537457

RESUMEN

Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.


Asunto(s)
Ecosistema , Especies Introducidas , Suelo/química , Carbono , Biodiversidad , Plantas , Microbiología del Suelo
9.
Environ Pollut ; 347: 123760, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492754

RESUMEN

In this study, we focused on fabrication of porous ultra-thin ZnO nanosheet (PUNs)/CuCo2S4 quantum dots (CCS QDs) for visible light-driven photodegradation of rifampicin (RIF) and Cr(VI) reduction. The morphology, structural, optical and textural properties of fabricated photocatalyst were critically analyzed with different analytical and spectroscopic techniques. An exceptionally high RIF degradation (99.97%) and maximum hexavalent Cr(VI) reduction (96.17%) under visible light was achieved at 10 wt% CCS QDs loaded ZnO, which is 213% and 517% greater than bare ZnO PUNs. This enhancement attributed to the improved visible light absorption, interfacial synergistic effect, and high surface-rich active sites. Extremely high generation of ●OH attributed to the spin-orbit coupling in ZnO PUNs@CCS QDs and the existence of oxygen vacancies. Besides, the ZnOPUNs@CCS QDs, forming Z-scheme heterojunctions, enhanced the separation of photogenerated charge carriers. We investigated the influencing factors such as pH, inorganic ions, catalyst dosage and drug dosage on the degradation process. More impressively, a stable performance of ZnO PUNs@CCS QDs obtained even after six consecutive degradation (85.9%) and Cr(VI) reduction (67.7%) cycles. Furthermore, the toxicity of intermediates produced during the photodegradation process were assessed using ECOSAR program. This work provides a new strategy for ZnO-based photocatalysis as a promising candidate for the treatment of various contaminants present in water bodies.


Asunto(s)
Cromo , Óxido de Zinc , Fotólisis , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Rifampin/toxicidad , Luz
10.
J Basic Microbiol ; 64(5): e2300744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466146

RESUMEN

Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.


Asunto(s)
Larva , Metarhizium , Control Biológico de Vectores , Pupa , Tenebrio , Animales , Tenebrio/microbiología , Metarhizium/patogenicidad , Metarhizium/crecimiento & desarrollo , Larva/microbiología , Pupa/microbiología , Virulencia , Superóxido Dismutasa/metabolismo , Glutatión Transferasa/metabolismo
11.
J Environ Manage ; 356: 120566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520854

RESUMEN

Quiescent batch experiments were conducted to evaluate the influences of Cl-, F-, HCO3-, HPO42-, and SO42- on the reactivity of metallic iron (Fe0) for water remediation using the methylene blue (MB) method. Strong discoloration of MB indicates high availability of solid iron corrosion products (FeCPs). Tap water was used as an operational reference. Experiments were carried out in graduated test tubes (22 mL) for up to 45 d, using 0.1 g of Fe0 and 0.5 g of sand. Operational parameters investigated were (i) equilibration time (0-45 d), (ii) 4 different types of Fe0, (iii) anion concentration (10 values), and (iv) use of MB and Orange II (O-II). The degree of dye discoloration, the pH, and the iron concentration were monitored in each system. Relative to the reference system, HCO3- enhanced the extent of MB discoloration, while Cl-, F-, HPO42-, and SO42- inhibited it. A different behavior was observed for O-II discoloration: in particular, HCO3- inhibited O-II discoloration. The increased MB discoloration in the HCO3- system was justified by considering the availability of FeCPs as contaminant scavengers, pH increase, and contact time. The addition of any other anion initially delays the availability of FeCPs. Conflicting results in the literature can be attributed to the use of inappropriate experimental conditions. The results indicate that the application of Fe0-based systems for water remediation is a highly site-specific issue which has to include the anion chemistry of the water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Hierro , Agua , Aniones , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
12.
Environ Sci Pollut Res Int ; 31(17): 24836-24850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456983

RESUMEN

Chromium (Cr) contamination in soil-plant systems poses a pressing environmental challenge due to its detrimental impacts on plant growth and human health. Results exhibited that Cr stress decreased shoot biomass, root biomass, leaf relative water content, and plant height. However, single and co-application of Bacillus subtilis (BS) and arbuscular mycorrhizal fungi (AMF) considerably enhanced shoot biomass (+ 21%), root biomass (+ 2%), leaf relative water content (+ 26%), and plant height (+ 13) under Cr stress. The frequency of mycorrhizal (F) association (+ 5%), mycorrhizal colonization (+ 13%), and abundance of arbuscules (+ 5%) in the non-stressed soil was enhanced when inoculated with combined BS and AMF as compared to Cr-stressed soil. The co-inoculation with BS and AMF considerably enhanced total chlorophyll, carotenoids, and proline content in Cr-stressed plants. Cr-stressed plants resulted in attenuated response in SOD, POD, CAT, and GR activities when inoculated with BS and AMF consortia by altering oxidative stress biomarkers (H2O2 and MDA). In Cr-stressed plants, the combined application of BS and AMF considerably enhanced proline metabolism, for instance, P5CR (+ 17%), P5CS (+ 28%), OAT (- 22%), and ProDH (- 113%) as compared to control. Sole inoculation with AMF downregulated the expression of SIPIP2;1, SIPIP2;5, and SIPIP2;7 in Cr-stressed plants. However, the expression of NCED1 was downregulated with the application of sole AMF. In contrast, the relative expression of Le4 was upregulated in the presence of AMF and BS combination in Cr-stressed plants. Therefore, it is concluded that co-application of BS and AMF enhanced Cr tolerance by enhancing proline metabolism, antioxidant enzymes, and aquaporin gene expression. Future study might concentrate on elucidating the molecular processes behind the synergistic benefits of BS and AMF, as well as affirming their effectiveness in field experiments under a variety of environmental situations. Long-term research on the effect of microbial inoculation on soil health and plant production might also help to design sustainable chromium remediation solutions.


Asunto(s)
Micorrizas , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cromo , Peróxido de Hidrógeno/metabolismo , Micorrizas/fisiología , Bacterias/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Suelo , Agua , Expresión Génica , Raíces de Plantas/metabolismo
13.
Front Physiol ; 15: 1357411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496298

RESUMEN

Chemical insecticides are effective at controlling mosquito populations, but their excessive use can pollute the environment and harm non-target organisms. Mosquitoes can also develop resistance to these chemicals over time, which makes long-term mosquito control efforts challenging. In this study, we assessed the phytochemical, biochemical, and insecticidal properties of the chemical constituents of cajeput oil. Results show that Melaleuca cajuputi essential oil may exhibit mosquito larvicidal properties against Anopheles stephensi larvae (second-fourth instar) at 24 h post-treatment. At 24 h post-exposure, the essential oil resulted in a significant decrease in detoxifying enzymes. All of these findings indicate that cajeput oil infects An. stephensi larvae directly affect the immune system, leading to decreased immune function. Cajeput oil significantly affects the second, third, and fourth instar larvae of An. stephensi, according to the bioassay results. Cajeput oil does not induce toxicity in non-target Eudrilus eugeniae earthworm species, as indicated by a histological study of earthworms. Phytochemical screening and GC-MS analysis of the essential oil revealed the presence of several major phytochemicals that contribute to mosquito larvicidal activity. The importance of cajeput oil as an effective candidate for biological control of the malarial vector An. stephensi is supported by this study.

14.
Front Microbiol ; 15: 1336334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419636

RESUMEN

In this study, we conducted tests on the isolation, identification, characterization, and extraction of chemical molecules from Beauveria bassiana against Tuta absoluta larvae. The enzyme responses of T. absoluta to the crude extract were examined 24 h after treatment, and the number of dead larvae was calculated 24 and 48 h after treatment. Molecular docking studies were conducted to assess the interaction of important molecules with the acetylcholinesterase enzyme. The larvicidal activity of crude chemicals from fungi was high 24 h after treatment, with LC50 and LC90 values of 25.937 and 33.559 µg/mL, respectively. For a period of 48 h, the LC50 and LC90 values were 52.254 and 60.450 µg/mL, respectively. The levels of acetylcholinesterase, α-carboxylesterase, and ß-carboxylesterase enzymes were lower in the treatment group after 24 h compared to the control group. The GC-MS test revealed that the crude extract consisted mainly of 9,10-octadecadienoic acid, which was the primary compound. Docking results indicated that 9,10-octadecadienoic acid showed a strong interaction with acetylcholinesterase (AChE). Our findings suggest that the chemical molecule 9,10-octadecadienoic acid derived from the entomopathogenic fungus B. bassiana is more toxic to T. absoluta larvae. We plan to conduct studies to test its effectiveness in semi-field conditions and to evaluate its stability in field conditions. We believe that this 9,10-octadecadienoic acid molecule could be used to control T. absoluta larvae in the near future without causing environmental pollution.

15.
BMC Plant Biol ; 24(1): 115, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365582

RESUMEN

Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Raphanus , Contaminantes del Suelo , Cromo , Clorofila A , Ecosistema , Carbón Orgánico , Suelo/química
16.
Environ Res ; 248: 118278, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246297

RESUMEN

Biomedical applications for various types of nanoparticles are emerging on a daily basis. Hence this research was performed to evaluate the antifungal (Aspergillus sp., Alternaria sp., Trichophyton sp., Candida sp., and Penicillium sp.), cytotoxicity (MCF10A cell lines), and antioxidant (DPPH) potential of Coleus aromaticus mediated and pre-characterized TiO2NPs were studied with respective standard methodology. Interestingly, the TiO2NPs exhibited significant antifungal activity on pathogenic fungal strains like Alternaria sp., Aspergillus sp. (31 ± 1.4), Penicillium sp. (31 ± 1.9) Trichophyton sp. (27 ± 2.1), and Candida sp. (26 ± 2.3) at high concentration (250 µg mL-1). However, the considerable levels of zone of inhibitions on fungal pathogens were recorded at 100 µg mL-1 of TiO2NPs as well as it was considerably greater than positive control. It also demonstrated dose based anti-inflammatory and antidiabetic activities. The plant-mediated TiO2NPs demonstrated a maximum DPPH scavenging efficiency of 91% at a dosage of 250 µg mL-1, comparable to the positive control's 94%. Furthermore, TiO2NPs at 100 µg mL-1 concentration did not cause cytotoxicity in MCF10A cell lines. At higher concentrations (250 µg mL-1), the nanoparticles showed the lowest cytotoxicity (17%). These findings suggest that C. aromaticus-mediated TiO2NPs have significant biomedical applications. However, in-vivo studies are needed to learn more about their (C. aromaticus-mediated TiO2NPs) potential biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Antifúngicos , Antioxidantes , Aspergillus , Línea Celular , Nanopartículas del Metal/química
17.
J Biochem Mol Toxicol ; 38(1): e23578, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37927152

RESUMEN

Lung cancer is one of the most common cancers in men. Although many diagnostic and treatment regimens have been followed in the treatment for lung cancer, increasing mortality rate due to lung cancer is depressing and hence requires alternative plant based therapeutics with with less side-effects. Myrtenol exhibits anti-inflammatory and antioxidant properties. Hence we intended to study the effect of Myrtenol on B(a)P-induced lung cancer. Our study showed that B(a)P lowered hematological count, decreased phagocyte and avidity indices, nitroblue tetrazolium (NBT) reduction, levels of immunoglubulins, antioxidant levels, whereas Myrtenol treatment restored them back to normal levels. On the other hand, xenobiotic and liver dysfunction marker enzymes and pro-inflammatory cytokines were elevated on B(a)P exposure, which retuned back to normal by Myrtenol. This study thus describes the immunomodulatory and antioxidant effects of Myrtenol on B[a]P-induced immune destruction.


Asunto(s)
Monoterpenos Bicíclicos , Neoplasias Pulmonares , Humanos , Masculino , Ratones , Animales , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Citocinas/metabolismo , Benzo(a)pireno/toxicidad , Antioxidantes/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Biomarcadores de Tumor/metabolismo , Pulmón/metabolismo
18.
Environ Res ; 245: 118025, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38151153

RESUMEN

The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.


Asunto(s)
Chlorella vulgaris , Microalgas , Biocombustibles , Biomasa , Ácidos Grasos/análisis
19.
BMC Plant Biol ; 23(1): 615, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049735

RESUMEN

Osmotic stress is a significant concern in agricultural crop production as it can harm crop growth, development, and productivity. Agriculture crops are particularly vulnerable to osmotic stress due to their reliance on water availability for various physiological processes. Organic amendments like activated carbon biochar and growth hormone gibberellic acid (GA3) can play a vital role. However, the time needed is to modify the established amendment to achieve better results. That's why the current study used potassium-enriched biochar (KBC = 0.75%) with and without GA3 (15 mg/L) as amendments under no osmotic stress and osmotic stress in wheat. Results showed that GA3 + KBC caused significant enhancement in germination (9.44%), shoot length (29.30%), root length (21.85%), shoot fresh weight (13.56%), shoot dry weight (68.38), root fresh weight (32.68%) and root dry weight (28.79%) of wheat over control under osmotic stress (OS). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll, while the decline in electrolyte leakage of wheat, also validated the effectiveness of GA3 + KBC over control in OS. In conclusion, GA3 + KBC is the most effective among all applied treatments for improving wheat growth attributes under no osmotic and osmotic stress. Further research is needed at the field level, focusing on various cereal crops, to establish GA3 + KBC as the optimal treatment for effectively mitigating the impacts of osmotic stress.


Asunto(s)
Carbón Orgánico , Triticum , Potasio , Sequías , Clorofila A , Productos Agrícolas
20.
Sci Rep ; 13(1): 21837, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071373

RESUMEN

COVID-19, a novel pathogen that emerged in late 2019, has the potential to cause pneumonia with unique variants upon infection. Hence, the development of efficient diagnostic systems is crucial in accurately identifying infected patients and effectively mitigating the spread of the disease. However, the system poses several challenges because of the limited availability of labeled data, distortion, and complexity in image representation, as well as variations in contrast and texture. Therefore, a novel two-phase analysis framework has been developed to scrutinize the subtle irregularities associated with COVID-19 contamination. A new Convolutional Neural Network-based STM-BRNet is developed, which integrates the Split-Transform-Merge (STM) block and Feature map enrichment (FME) techniques in the first phase. The STM block captures boundary and regional-specific features essential for detecting COVID-19 infectious CT slices. Additionally, by incorporating the FME and Transfer Learning (TL) concept into the STM blocks, multiple enhanced channels are generated to effectively capture minute variations in illumination and texture specific to COVID-19-infected images. Additionally, residual multipath learning is used to improve the learning capacity of STM-BRNet and progressively increase the feature representation by boosting at a high level through TL. In the second phase of the analysis, the COVID-19 CT scans are processed using the newly developed SA-CB-BRSeg segmentation CNN to accurately delineate infection in the images. The SA-CB-BRSeg method utilizes a unique approach that combines smooth and heterogeneous processes in both the encoder and decoder. These operations are structured to effectively capture COVID-19 patterns, including region-homogenous, texture variation, and border. By incorporating these techniques, the SA-CB-BRSeg method demonstrates its ability to accurately analyze and segment COVID-19 related data. Furthermore, the SA-CB-BRSeg model incorporates the novel concept of CB in the decoder, where additional channels are combined using TL to enhance the learning of low contrast regions. The developed STM-BRNet and SA-CB-BRSeg models achieve impressive results, with an accuracy of 98.01%, recall of 98.12%, F-score of 98.11%, Dice Similarity of 96.396%, and IOU of 98.85%. The proposed framework will alleviate the workload and enhance the radiologist's decision-making capacity in identifying the infected region of COVID-19 and evaluating the severity stages of the disease.


Asunto(s)
COVID-19 , Radiología , Humanos , COVID-19/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X , Aprendizaje , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...