Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 96(20): e0082822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197108

RESUMEN

Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.


Asunto(s)
Dengue , PPAR gamma , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Proteínas Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/patología , Dengue/patología
2.
Microbiol Spectr ; 10(3): e0083022, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604158

RESUMEN

The nonstructural protein 4A (NS4A) of flaviviruses has been implicated as a "central organizer" of the membrane-bound replication complex during virus replication. However, its role in the host responses to virus infection is not understood. Using the yeast-two-hybrid library screen, we identified a multitude of host proteins interacting with the Japanese encephalitis virus (JEV) NS4A protein. Several of these interacting proteins are known to localize to the mitochondria. One of these proteins was PTEN-induced kinase 1 (PINK1), a serine/threonine-protein kinase known for its role in mitophagy. Here, we demonstrate the JEV-NS4A localization to the mitochondria and its interaction with PINK1 in Huh7 cells during JEV infection. The JEV-infected cells showed an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We present data showing that JEV-NS4A alone was sufficient to induce mitophagy. Interference with mitochondrial fragmentation and mitophagy resulted in reduced virus propagation. Overall, our study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein. IMPORTANCE The JEV-infected mammalian cells show an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We show that the NS4A protein of JEV localized to the mitochondria and interacted with PINK1 in Huh7 cells during infection with the virus and demonstrate that JEV-NS4A alone is sufficient to induce mitophagy. The study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/metabolismo , Mamíferos/metabolismo , Mitofagia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas no Estructurales Virales/metabolismo
3.
Front Cell Infect Microbiol ; 12: 821061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573775

RESUMEN

The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Coinfección , Virus del Dengue , Dengue , Sobreinfección , Línea Celular , Fiebre Chikungunya/complicaciones , Dengue/complicaciones , Humanos
4.
Mitochondrion ; 58: 227-242, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33775873

RESUMEN

Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Homeostasis , Mitocondrias/metabolismo , Virus/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...