Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
RSC Adv ; 14(9): 6096-6111, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38370460

Christella dentata (Forssk.) Brownsey & Jermy has been commonly used in traditional medicinal practices but its effects on multi-drug-resistant (MDR) bacteria have remained unexplored. We aimed to assess the in vitro antibacterial potential of the ethanol extract of Christella dentata (EECD) against MDR Pseudomonas aeruginosa and to identify potential multi-targeting antibacterial phytocompounds through computer-aided drug design focusing on the LasR and LpxC proteins. PPS, FT-IR and GC-MS were used for profiling of the phytocompounds in EECD. The antimicrobial activity of EECD was assessed using in vitro agar well diffusion, disc diffusion, MIC and MBC. Computer-aided drug design was used to identify multi-targeting leads from GC-MS-annotated phytocompounds. EECD exhibited dose-dependent antibacterial activity and revealed the presence of 51 phytocompounds in GC-MS analysis. Among these, three phytocompounds; (2E,4E)-N-isobutylhexadeca-2,4-dienamide (CID 6442402), bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- (CID 536446) and 1,4-diethylbenzene (CID 7734) were identified as promising antibacterial phytocompounds as they strongly bonded with LasR and LpxC. Of them, CID 536446 and CID 7734 exhibited multiple targeting abilities with LasR and LpxC. On further screening, both CID 536446 and CID 7734 exhibited favorable drug-able, pharmacokinetics and toxicity properties. Finally, molecular dynamics (MD) simulation proved the binding stability of bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene to active pockets of LasR and LpxC. The results of this study offer scientific validation for the traditional use of Christella dentata in bacterial infection-related diseases. It also suggests that bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene from Christella dentata might be responsible for the antibacterial activity and could act as phytopharmacological leads for the development of LasR and LpxC inhibitors against MDR P. aeruginosa.

2.
Medicine (Baltimore) ; 102(45): e35347, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37960765

Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Male , Glypicans/genetics , Glypicans/metabolism , Clinical Relevance , Epigenesis, Genetic , Neoplasm Recurrence, Local/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , Prognosis
3.
Front Immunol ; 14: 1160260, 2023.
Article En | MEDLINE | ID: mdl-37441076

Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer in humans. MCV has been identified in approximately 43%-100% of MCC cases, contributing to the highly aggressive nature of primary cutaneous carcinoma and leading to a notable mortality rate. Currently, no existing vaccines or drug candidates have shown efficacy in addressing the ailment caused by this specific pathogen. Therefore, this study aimed to design a novel multiepitope vaccine candidate against the virus using integrated immunoinformatics and vaccinomics approaches. Initially, the highest antigenic, immunogenic, and non-allergenic epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B lymphocytes corresponding to the virus whole protein sequences were identified and retrieved for vaccine construction. Subsequently, the selected epitopes were linked with appropriate linkers and added an adjuvant in front of the construct to enhance the immunogenicity of the vaccine candidates. Additionally, molecular docking and dynamics simulations identified strong and stable binding interactions between vaccine candidates and human Toll-like receptor 4. Furthermore, computer-aided immune simulation found the real-life-like immune response of vaccine candidates upon administration to the human body. Finally, codon optimization was conducted on the vaccine candidates to facilitate the in silico cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine candidate developed in this study is anticipated to augment the immune response in humans and effectively combat the virus. Nevertheless, it is imperative to conduct in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates thoroughly. These evaluations will provide critical insights into the vaccine's effectiveness and potential for further development.


Carcinoma, Merkel Cell , Merkel cell polyomavirus , Skin Neoplasms , Vaccines , Humans , Molecular Docking Simulation , Carcinoma, Merkel Cell/prevention & control , Viral Proteins , Epitopes, B-Lymphocyte
4.
Pathogens ; 12(6)2023 Jun 18.
Article En | MEDLINE | ID: mdl-37375532

Hepatitis C virus (HCV) is a dangerous virus that is responsible for a large number of infections and deaths worldwide. In the treatment of HCV, it is important that the drugs are effective and do not have additional hepatotoxic effects. The aim of this study was to test the in silico activity of 1893 terpenes against the HCV NS5B polymerase (PDB-ID: 3FQK). Two drugs, sofosbuvir and dasabuvir, were used as controls. The GOLD software (CCDC) and InstaDock were used for docking. By using the results obtained from PLP.Fitness (GOLD), pKi, and binding free energy (InstaDock), nine terpenes were finally selected based on their scores. The drug-likeness properties were calculated using Lipinski's rule of five. The ADMET values were studied using SwissADME and pkCSM servers. Ultimately, it was shown that nine terpenes have better docking results than sofosbuvir and dasabuvir. These were gniditrin, mulberrofuran G, cochlearine A, ingenol dibenzoate, mulberrofuran G, isogemichalcone C, pawhuskin B, 3-cinnamyl-4-oxoretinoic acid, DTXSID501019279, and mezerein. Each docked complex was submitted to 150 ns-long molecular dynamics simulations to ascertain the binding stability. The results show that mulberrofuran G, cochlearine A, and both stereoisomers of pawhuskin B form very stable interactions with the active site region where the reaction product should form and are, therefore, good candidates for use as effective competitive inhibitors. The other compounds identified in the docking screen either afford extremely weak (or even hardly any) binding (such as ingenol dibenzoate, gniditrin, and mezerein) or must first undergo preliminary movements in the active site before attaining their stable binding conformations, in a process which may take from 60 to 80 ns (for DTXSID501019279, 3-cinnamyl-4-oxoretinoic acid or isogemichalcone C).

5.
BMC Med ; 21(1): 36, 2023 02 01.
Article En | MEDLINE | ID: mdl-36726141

BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS: The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS: After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS: Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Viral Vaccines , Humans , Animals , Hemorrhagic Fever, Crimean/prevention & control , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Disease Outbreaks/prevention & control , Vaccination
6.
Heliyon ; 9(1): e12855, 2023 Jan.
Article En | MEDLINE | ID: mdl-36747926

Senna tora (L.) Roxb. is an ethno-medicinal herb used by rural and tribal people of the Satpura region of Madhya Pradesh in India and the Phatthalung Province of Thailand for treating rheumatism, bronchitis, ringworm, itches, leprosy, dyspepsia, liver disorders and heart disorders. It is also used in Chinese and Ayurvedic medicine. This study was conducted to investigate the potential of Senna tora (L.) Roxb. as a source of drug candidates against oxidants, inflammation, and bacterial infection. Preliminary phytochemical screening (PPS) and GC-MS were performed to identify the phytochemicals in the ethyl acetate extract of Senna tora (L.) Roxb. leaves (EAESTL). The in vitro antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and H2O2-scavenging tests; the in vitro anti-inflammatory activity was determined by bovine serum albumin (BSA) denaturation and red blood cell (RBC) hemolysis inhibition; and the antibacterial activity was evaluated by agar-well diffusion methods. Cytotoxicity was estimated by Artemia salina larvae lethality, while acute toxicity was evaluated by oral delivery of the extract to mice. In silico antioxidant, anti-inflammatory, and antibacterial activities were predicted by the Prediction of Activity Spectra for Substances (PASS) program. The pharmacokinetics related to ADME and toxicity tests were determined by the admetSAR2 and ADMETlab2 web servers, and drug-able properties were assessed by the SwissADME server. GC-MS detected fifty-nine phytochemicals that support the types of compounds (phenols, flavonoids, tannins, terpenoids, saponins, steroids, alkaloids, glycosides and reducing sugar) identified by phytochemical screening. EAESTL exhibited dose-dependent antioxidant, anti-inflammatory, and antibacterial activities without any adverse effects or fluctuations in body weight. The PASS program predicted that the identified phytochemicals have antioxidant, anti-inflammatory and antibacterial activities. Among 51 phytochemicals, 16 showed good ADME, and 8 fulfilled drug-able properties without toxicity. Altogether, four phytochemicals, viz., benzyl alcohol, 3-(hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one, phenylethyl alcohol and 2,6,6-trimethylbicyclo [3.1.1] heptane-3-ol, showed good pharmacokinetics and drug-able properties without toxicity, along with antioxidant, anti-inflammatory, and antibacterial activities. The obtained results suggest that Senna tora (L.) Roxb. leaves contain bioactive phytochemicals that have the potential to fight against oxidants, inflammation, and bacterial infection as potential drug candidates.

7.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 20.
Article En | MEDLINE | ID: mdl-35631328

Merkel cell carcinoma (MCC) is a rare form of aggressive skin cancer mainly caused by Merkel cell polyomavirus (MCPyV). Most MCC tumors express MCPyV large T (LT) antigens and play an important role in the growth-promoting activities of oncoproteins. Truncated LT promotes tumorigenicity as well as host cell proliferation by activating the viral replication machinery, and inhibition of this protein in humans drastically lowers cellular growth linked to the corresponding cancer. Our study was designed with the aim of identifying small molecular-like natural antiviral candidates that are able to inhibit the proliferation of malignant tumors, especially those that are aggressive, by blocking the activity of viral LT protein. To identify potential compounds against the target protein, a computational drug design including molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamics (MD) simulation, and molecular mechanics generalized Born surface area (MM-GBSA) approaches were applied in this study. Initially, a total of 2190 phytochemicals isolated from 104 medicinal plants were screened using the molecular docking simulation method, resulting in the identification of the top five compounds having the highest binding energy, ranging between -6.5 and -7.6 kcal/mol. The effectiveness and safety of the selected compounds were evaluated based on ADME and toxicity features. A 250 ns MD simulation confirmed the stability of the selected compounds bind to the active site (AS) of the target protein. Additionally, MM-GBSA analysis was used to determine the high values of binding free energy (ΔG bind) of the compounds binding to the target protein. The five compounds identified by computational approaches, Paulownin (CID: 3084131), Actaealactone (CID: 11537736), Epigallocatechin 3-O-cinnamate (CID: 21629801), Cirsilineol (CID: 162464), and Lycoricidine (CID: 73065), can be used in therapy as lead compounds to combat MCPyV-related cancer. However, further wet laboratory investigations are required to evaluate the activity of the drugs against the virus.

8.
Molecules ; 27(7)2022 Mar 24.
Article En | MEDLINE | ID: mdl-35408488

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Antineoplastic Agents , Avicennia , Catharanthus , Colorectal Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Avicennia/metabolism , Catharanthus/metabolism , Colorectal Neoplasms/drug therapy , Humans , Molecular Docking Simulation , Thymidylate Synthase/metabolism
9.
Microorganisms ; 10(2)2022 Feb 04.
Article En | MEDLINE | ID: mdl-35208818

Long-term fungal infections that are difficult to treat require new substances for their prevention, treatment, or as adjuvants during antibiotic therapy. Propolis is a very promising source of natural substances that show a wide range of pharmacological properties, including antifungal activity against various fungal strains. The purpose of the literature review was to summarize recent studies (PubMed, Scopus) on progress in evaluating the antifungal activity of chemically defined propolis extracts. During the selection of studies, only those with results of antifungal activity expressed as minimal inhibitory concentration (MIC) and/or minimal fungicidal concentration (MFC) were analyzed. Moreover, plant, animal and environmental factors influencing the chemical composition of propolis are discussed. Mechanisms of antifungal activity of propolis extracts and research trends in the aspect of developing new therapies and the assessment of drug interactions are indicated. The review of the research results shows that there is great progress in the definition of propolis extracts. After comparing the MIC/MFC values, it was assessed that propolis extracts offer a wide range of activity not only against pathogenic Candida strains but also against risky molds; however, the strength of this activity is varied.

10.
Mol Neurobiol ; 59(3): 1819-1835, 2022 Mar.
Article En | MEDLINE | ID: mdl-35028900

Loss of tubulin is associated with neurodegeneration and brain aging. Turmeric (Curcuma longa L.) has frequently been employed as a spice in curry and traditional medications in the Indian subcontinent to attain longevity and better cognitive performance. We aimed to evaluate the unelucidated mechanism of how turmeric protects the brain to be an anti-aging agent. D. melanogaster was cultured on a regular diet and turmeric-supplemented diet. ß-tubulin level and physiological traits including survivability, locomotor activity, fertility, tolerance to oxidative stress, and eye health were analyzed. Turmeric showed a hormetic effect, and 0.5% turmeric was the optimal dose in preventing aging. ß-tubulin protein level was decreased in the brain of D. melanogaster upon aging, while a 0.5% turmeric-supplemented diet predominantly prevented this aging-induced loss of ß-tubulin and degeneration of physiological traits as well as improved ß-tubulin synthesis in the brain of D. melanogaster early to mid-age. The higher concentration (≥ 1%) of turmeric-supplemented diet decreased the ß-tubulin level and degenerated many of the physiological traits of D. melanogaster. The turmeric concentration-dependent increase and decrease of ß-tubulin level were consistent with the increment and decrement data obtained from the evaluated physiological traits. This correlation demonstrated that turmeric targets ß-tubulin and has both beneficial and detrimental effects that depend on the concentration of turmeric. The findings of this study concluded that an optimal dosage of turmeric could maintain a healthy neuron and thus healthy aging, by preventing the loss and increasing the level of ß-tubulin in the brain.


Curcuma , Healthy Aging , Animals , Brain , Drosophila melanogaster , Plant Extracts/pharmacology , Tubulin
11.
J Biomol Struct Dyn ; 40(1): 14-30, 2022 Jan.
Article En | MEDLINE | ID: mdl-32677533

Ongoing COVID-19 outbreak has raised a drastic challenge to global public health security. Most of the patients with COVID-19 suffer from mild flu-like illnesses such as cold and fever; however, few percentages of the patients progress from severe illness to death, mostly in an immunocompromised individual. The causative agent of COVID-19 is an RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite these debilitating conditions, no medication to stop the disease progression or vaccination is available till now. Therefore, we aimed to formulate a multi-epitope vaccine against SARS-CoV-2 by utilizing an immunoinformatics approach. For this purpose, we used the SARS-CoV-2 spike glycoprotein to determine the immunodominant T- and B-cell epitopes. After rigorous assessment, we designed a vaccine construct using four potential epitopes from each of the three epitope classes such as cytotoxic T-lymphocytes, helper T-lymphocyte, and linear B-lymphocyte epitopes. The designed vaccine was antigenic, immunogenic, and non-allergenic with suitable physicochemical properties and has higher solubility. More importantly, the predicted vaccine structure was similar to the native protein. Further investigations indicated a strong and stable binding interaction between the vaccine and the toll-like receptor (TLR4). Strong binding stability and structural compactness were also evident in molecular dynamics simulation. Furthermore, the computer-generated immune simulation showed that the vaccine could trigger real-life-like immune responses upon administration into humans. Finally, codon optimization based on Escherichia coli K12 resulted in optimal GC content and higher CAI value followed by incorporating it into the cloning vector pET28+(a). Overall, these results suggest that the designed peptide vaccine can serve as an excellent prophylactic candidate against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation
12.
Int J Biol Macromol ; 191: 1114-1125, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34592225

Angiotensin-converting enzyme 2 (ACE2), also known as peptidyl-dipeptidase A, belongs to the dipeptidyl carboxydipeptidases family has emerged as a potential antiviral drug target against SARS-CoV-2. Most of the ACE2 inhibitors discovered till now are chemical synthesis; suffer from many limitations related to stability and adverse side effects. However, natural, and selective ACE2 inhibitors that possess strong stability and low side effects can be replaced instead of those chemicals' inhibitors. To envisage structurally diverse natural entities as an ACE2 inhibitor with better efficacy, a 3D structure-based-pharmacophore model (SBPM) has been developed and validated by 20 known selective inhibitors with their correspondence 1166 decoy compounds. The validated SBPM has excellent goodness of hit score and good predictive ability, which has been appointed as a query model for further screening of 11,295 natural compounds. The resultant 23 hits compounds with pharmacophore fit score 75.31 to 78.81 were optimized using in-silico ADMET and molecular docking analysis. Four potential natural inhibitory molecules namely D-DOPA (Amb17613565), L-Saccharopine (Amb6600091), D-Phenylalanine (Amb3940754), and L-Mimosine (Amb21855906) have been selected based on their binding affinity (-7.5, -7.1, -7.1, and -7.0 kcal/mol), respectively. Moreover, 250 ns molecular dynamics (MD) simulations confirmed the structural stability of the ligands within the protein. Additionally, MM/GBSA approach also used to support the stability of molecules to the binding site of the protein that also confirm the stability of the selected four natural compounds. The virtual screening strategy used in this study demonstrated four natural compounds that can be utilized for designing a future class of potential natural ACE2 inhibitor that will block the spike (S) protein dependent entry of SARS-CoV-2 into the host cell.


Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Biological Products/pharmacokinetics , Biological Products/toxicity , Computer Simulation , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
13.
Molecules ; 26(16)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34443556

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic virus first reported into the human population in September 2012 on the Arabian Peninsula. The virus causes severe and often lethal respiratory illness in humans with an unusually high fatality rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins can recognize a variety of host protein and mediates entry into human host cells. Blocking the entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharmacophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated through the ADMET properties. The compounds with the best ADME and toxicity properties have been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been performed to optimize the geometry of the selected compounds. Three optimized natural compounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659), and Sophoricoside (Amb1153724), have exhibited substantial docking energy >-9.00 kcal/mol, where analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of the selected natural compound to the binding site of the protein. Additionally, molecular mechanics generalized born surface area (MM/GBSA) predicted the good value of binding free energies (ΔG bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.


Antiviral Agents/pharmacology , Biological Products/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Quantum Theory , Antiviral Agents/metabolism , Biological Products/metabolism , Catalytic Domain , Drug Evaluation, Preclinical , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , User-Computer Interface
14.
J Mol Med (Berl) ; 99(9): 1293-1309, 2021 09.
Article En | MEDLINE | ID: mdl-34047812

Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. KEY MESSAGES: • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types.


ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Liver Neoplasms/genetics , Lung Neoplasms/genetics , Ovarian Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , DNA Methylation , Databases, Genetic , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Variation , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Treatment Outcome
15.
Brief Bioinform ; 22(5)2021 09 02.
Article En | MEDLINE | ID: mdl-33834183

Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed to the protein-ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.


Azadirachta/chemistry , Informatics/methods , Minichromosome Maintenance Complex Component 7/antagonists & inhibitors , Molecular Dynamics Simulation , Neoplasms/drug therapy , Phytochemicals/therapeutic use , Algorithms , Binding Sites , Early Detection of Cancer , Humans , Ligands , Minichromosome Maintenance Complex Component 7/chemistry , Minichromosome Maintenance Complex Component 7/metabolism , Molecular Docking Simulation , Molecular Targeted Therapy/methods , Neoplasms/diagnosis , Neoplasms/metabolism , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Protein Binding , Protein Domains , Thermodynamics
16.
Heliyon ; 7(1): e05814, 2021 Jan.
Article En | MEDLINE | ID: mdl-33426350

INTRODUCTION: Tragia involucrata L. have been utilized as traditional medicine in Indian subcontinent for the treatment of numerous illnesses such as inflammation, pain and skin infection. In this current study we sought to assess the anxiolytic, sedative and analgesic activity of Tragia involucrata L. leaves extract. MATERIALS AND METHODS: We first performed a phytochemical screening test of the leaves extracts following standard phytochemical screening protocols. We next examined the anxiolytic and sedative activity of crude methanol (TIME), ethyl acetate (TIEAE) and n-Hexane (TIHE) extract of Tragia involucrata L. leaves using mouse behavioral models such as elevated plus-maze test and pentobarbital-induced sleeping time test, respectively. Likewise, we evaluated the analgesic activity using acetic acid induced writhing test and formalin induced paw licking test. Additionally, we performed a quantitative analysis of heavy metals content of Tragia involucrata L. leaves by overnight digestion in concentrated nitric acid (HNO3). RESULTS: Phytochemical screening demonstrated that TIME, TIEAE and TIHE contain flavonoids, alkaloids, tannins, phenols, terpenoids and sterols. Administration of these extracts resulted in higher number of open arm entry, lower number of close arm entry and higher time spent in open arm compared to control treatment (p < 0.05). Moreover, these treatments decreased the onset of sleep time and increased the duration of sleep compared to control treated mice (all p < 0.05). Likewise, extracts treated mice exhibited decreased number of writhing as well as lower acute phase and late phase duration compared to control treatment (all p < 0.05). The average level of As and Fe in Tragia involucrata L. leaves was 5.16 ± 0.012 ppm and 2.76 ± 0.015 ppm, respectively. CONCLUSION: Results from this study support that Tragia involucrata L. leaves extracts exhibit an anxiolytic, sedative and analgesic activity in mice.

17.
Mar Drugs ; 20(1)2021 Dec 29.
Article En | MEDLINE | ID: mdl-35049891

Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophylls, having multidirectional activity, including antioxidant, anti-inflammatory, and anticancer. Both compounds also show antimicrobial activity, which is presented in this review article. There are few papers that have presented the antimicrobial activity of AST. Obtained antimicrobial concentrations of AST (200-4000 µg/mL) are much higher than recommended by the European Food Safety Authority for consumption (2 mg daily). Therefore, we suggest that AST is unlikely to be of use in the clinical treatment of infections. Our knowledge about the antimicrobial activity of FUC is better and this compound acts against many bacteria already in low concentrations 10-250 µg/mL. Toxicological studies on animals present the safety of FUC application in doses 200 mg/kg body weight and higher. Taking available research into consideration, a clinical application of FUC as the antimicrobial substance is real and can be successful. However, this aspect requires further investigation. In this review, we also present potential mechanisms of antibacterial activity of carotenoids, to which AST and FUC belong.


Anti-Bacterial Agents/administration & dosage , Xanthophylls/administration & dosage , Animals , Aquatic Organisms , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests
18.
RSC Adv ; 11(63): 40120-40135, 2021 Dec 13.
Article En | MEDLINE | ID: mdl-35494115

SARS-CoV-2 is an etiologic agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. The virus has rapidly extended globally and taken millions of lives due to the unavailability of therapeutics candidates against the virus. Till now, no specific drug candidates have been developed that can prevent or treat infections caused by the pathogen. The main protease (Mpro) of the SARS-CoV-2 plays a pivotal role in mediating viral replication and mechanistically inhibition of the protein can hinder the replication and infection process of the virus. Therefore, the study aimed to identify the natural bioactive compounds against the virus that can block the activity of the Mpro and subsequently block viral infections. Initially, a total of 96 phytochemicals from Ruellia prostrata Poir. and Senna tora (L.) Roxb. plants were identified through the gas chromatography-mass spectrometry (GC-MS) analytical method. Subsequently, the compounds were screened through molecular docking, absorption, distribution, metabolism, excretion (ADME), toxicity (T), and molecular dynamics (MD) simulation approach. The molecular docking method initially identified four molecules having a PubChem CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 with a binding affinity ranging between -6.067 to -6.53 kcal mol-1 to the active site of the target protein. All the selected compounds exhibit good pharmacokinetics and toxicity properties. Finally, the four compounds were further evaluated based on the MD simulation methods that confirmed the binding stability of the compounds to the targeted protein. The computational approaches identified the best four compounds CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 that can be developed as a treatment option of SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.

19.
Genomics ; 113(1 Pt 2): 1141-1154, 2021 01.
Article En | MEDLINE | ID: mdl-33189777

Bone morphogenetic protein 1 (BMP1) is a secreted metalloprotease of the astacin M12A family of bone morphogenetic proteins (BMPs). BMP1 activates transforming growth factor-ß (TGF-ß) and BMP signaling pathways by proteolytic cleavage, which has dual roles in gastrointestinal tumor development and progression.TGF-ß promotes invasion and metastasis of gastric cancer (GC) by the help of BMP1, so upregulation of the BMP1 may increase cancer invasiveness in GC. In this study,the transcriptional expression, mutations, survival rate, TFs, miRNAs, gene ontology, and signaling pathways of BMP1 were analyzed by using different web servers. We found higher transcriptional and clinicopathological characteristics expression compared to normal tissues, worsening survival rate in GC. We detected 25 missenses, 15 truncating mutations, 23 TFs, and 8 miRNAs. Finally, we identified and analyzed the co-expressed genes and found that the leukemia inhibitory factor is the most positively correlated gene. The gene ontological features and signaling pathways involved in GC development were evaluated as well. We believe that this study will provide a basis for BMP1 to be a significant biomarker for human GC prognosis.


Biomarkers, Tumor/genetics , Bone Morphogenetic Protein 1/genetics , Stomach Neoplasms/genetics , Biomarkers, Tumor/metabolism , Bone Morphogenetic Protein 1/metabolism , Computational Biology , Datasets as Topic , Gene Expression Regulation, Neoplastic , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Mutation , Prognosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Up-Regulation
20.
Biochem Biophys Rep ; 24: 100867, 2020 Dec.
Article En | MEDLINE | ID: mdl-33381666

Breast cancer ranked second among most frequent cancer in the world playing a significant role in mortality rate. Having prior knowledge on differentially expressed genes in breast cell carcinoma elucidated important indications to understand the molecular mechanism underneath breast carcinogenesis. In this study we have investigated the distinguished CSN1S1 expression in human breast cancer. We have analyzed CSN1S1 mRNA expression between cancer and normal tissues using TCGA datasets. Moreover, analysis including promoter methylation, mutations, prognosis, co-expression, gene ontology, and pathways of CSN1S1 were performed by the TCGA Wanderer, UCSC Xena, cBioPortal, PrognoScan, UALCAN, and Enricher server. We have observed low mRNA expression and high promoter methylation of CSN1S1 in cancer tissues compared to normal tissues. Furthermore, we have also identified low mRNA expression in clinicopathological patients, as well as 9 deleterious mutations with highly co-expressed protein MRC1, and significantly related signaling pathways. We have found a positive correlation between the lower expression of CSN1S1 and patients surviving with breast cancer. Here we have concluded that CSN1S1 acts as a biomarker for the surveillance and prognosis of breast cancer, and also works as a novel therapeutic target at the molecular and pathway levels.

...