Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891907

RESUMEN

Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.


Asunto(s)
Biomarcadores , Pruebas con Sangre Seca , Enfermedad de la Orina de Jarabe de Arce , Metabolómica , Tamizaje Neonatal , Humanos , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Recién Nacido , Pruebas con Sangre Seca/métodos , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Tamizaje Neonatal/métodos , Metaboloma , Espectrometría de Masas en Tándem
2.
Cancer Sci ; 115(6): 1834-1850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594840

RESUMEN

Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1ß inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas de Unión al ADN , Inflamasomas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Inflamasomas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Caspasa 1/metabolismo , Caspasa 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Mutación , Nitrosaminas , Femenino , Citosol/metabolismo , Proliferación Celular , Línea Celular Tumoral
3.
Signal Transduct Target Ther ; 9(1): 27, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311623

RESUMEN

Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Virosis , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral
4.
Mol Med Rep ; 29(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38334141

RESUMEN

Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and multiple single­nucleotide polymorphisms of DNA repair genes have been found to be associated with CVD. The aim of the present study was to assess the effects of the genetic variants of RAD51 recombinase (RAD51) and 8­oxoguanine DNA glycosylase (OGG1) on CVD through genotyping and statistical analysis. Regardless of whether there is a significant association or not, the genotyping data on these two polymorphisms are valuable, because there is limited availability of it in certain populations. A total of 240 blood samples were analyzed and genotyped using TaqMan genotyping; 120 were obtained from cases with a history of CVD, and 120 from cases with no history of CVD. A questionnaire was administered to gather information on age, demographics, sex and clinical features, and confirmation was carried out using medical records. The results of the present study confirmed that the polymorphism rs1052133 in OGG1 had no significant association with CVD. On the other hand, the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD. Collectively, the results of the present study revealed that the polymorphism rs1801321 in RAD51 exhibited a significant association with CVD, however a larger sample size to confirm the present findings, may allow for the early identification of CVD and may aid in the decision­making process concerning treatments for CVD.


Asunto(s)
Enfermedades Cardiovasculares , ADN Glicosilasas , Recombinasa Rad51 , Humanos , Enfermedades Cardiovasculares/genética , Estudios de Casos y Controles , ADN Glicosilasas/genética , Reparación del ADN/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Heliyon ; 10(1): e23689, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187237

RESUMEN

Background: Colon cancer is a serious public health issue and a major cause of cancer-related mortality worldwide, including Saudi Arabia. Knowledge of genes associated with colon cancer development and progression is essential for identifying new cancer-specific biomarkers to improve the diagnosis of colon cancer. Methods: The expression levels of FTHL17, PRM2, CABYR, CPXCR1, ADAM29, and CABS1 in 15 adjacent colon cancer and normal colon tissue samples from male patients were investigated using reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR) assays. qRT-PCR analysis was also used to determine whether reducing DNA methyltransferase (via 5-aza-2'-deoxycytidine treatment) or histone deacetylation (via trichostatin treatment) increased the expression levels of the tested genes. Results: The analysis of the 15 colon cancer and adjacent normal colon tissue samples revealed that all six genes were expressed in both groups, but their expression levels were significantly higher in the colon cancer group. Furthermore, the mRNA expression levels of the FTHL17, PRM2, CABYR, CPXCR1, and ADAM29 genes were considerably upregulated after treatment of HCT116 and Caco-2 cells with 5-aza-2'-deoxycytidine and trichostatin. However, the CABS1 gene was activated only with trichostatin treatment. Conclusions: The findings of this study suggest that FTHL17, PRM2, CABYR, CPXCR1, ADAM29, and CABS1 are suitable candidate biomarkers of colon cancer and their expressions are regulated by hypomethylation and hyperacetylation.

6.
Toxins (Basel) ; 15(11)2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37999527

RESUMEN

Fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, is one of the most common pollutants in natural foods and agricultural crops. It can cause chronic and severe health issues in humans and animals. The aim of this study was to evaluate the transgenerational effects of FB1 exposure on the structure and function of the kidneys in offspring. Virgin female Wistar rats were randomly divided into three groups: group one (control) received sterile water, and groups two and three were intragastrically administered low (20 mg/kg) and high (50 mg/kg) doses of FB1, respectively, from day 6 of pregnancy until delivery. Our results showed that exposure to either dose of FB1 caused histopathological changes, such as atrophy, hypercellularity, hemorrhage, calcification, and a decrease in the glomerular diameter, in both the first and second generations. The levels of the antioxidant markers glutathione, glutathione S-transferase, and catalase significantly decreased, while malondialdehyde levels increased. Moreover, autophagy was induced, as immunofluorescence analysis revealed that LC-3 protein expression was significantly increased in both generations after exposure to either dose of FB1. However, a significant decrease in methyltransferase (DNMT3) protein expression was observed in the first generation in both treatment groups (20 mg/kg and 50 mg/kg), indicating a decrease in DNA methylation as a result of early-life exposure to FB1. Interestingly, global hypomethylation was also observed in the second generation in both treatment groups despite the fact that the mothers of these rats were not exposed to FB1. Thus, early-life exposure to FB1 induced nephrotoxicity in offspring of the first and second generations. The mechanisms of action underlying this transgenerational effect may include oxidative stress, autophagy, and DNA hypomethylation.


Asunto(s)
Fumonisinas , Micotoxinas , Humanos , Ratas , Femenino , Animales , Micotoxinas/toxicidad , Metilación de ADN , Ratas Wistar , Fumonisinas/toxicidad , Estrés Oxidativo , Autofagia , ADN
7.
Nutrients ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764820

RESUMEN

Nutritional deficits in one's diet have been established as the key risk factor for T2DM in recent years. Nutritional therapy has been demonstrated to be useful in treating T2DM. The current study was carried out to assess the nutritional composition of bovine (12 months), chicken (4 months), sheep (13 months), and goat (9 months) femur bone extracts, as well as their potential therapeutic effects on T2DM regression in a Wistar albino rat model (500 mg/kg b.wt.). The proximate composition of the different extracts, their fatty acid composition, their amino acids, and their mineral contents were identified. In vivo data indicated considerably improved T2DM rats, as seen by lower serum levels of TL, TG, TC, ALT, AST, ALP, bilirubin, creatinine, urea, IL-6, TNF-α, sICAM-1, sVCAM-1, and MDA. Low levels of HDL-C, GSH, and total proteins were restored during this study. Histological investigations of liver and pancreatic tissue revealed that the distribution of collagen fibers was nearly normal. The bovine extract, on the other hand, was the most active, followed by the sheep, goat, and finally chicken extract. This research could result in the creation of a simple, noninvasive, low-cost, and reliable method for T2DM control, paving the way for potential early therapeutic applications in T2DM control.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cabras , Animales , Bovinos , Ovinos , Ratas , Ratas Wistar , Pollos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fitoquímicos , Fémur
8.
Front Cell Dev Biol ; 11: 1164301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384249

RESUMEN

Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.

9.
Mar Drugs ; 21(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37367661

RESUMEN

Impaired skin wound healing is still a major challenge, especially with immunocompromised patients who express delayed healing and are susceptible to infections. Injection of rat-derived bone marrow mesenchymal stem cells (BMMSCs) via the tail vein accelerates cutaneous wound healing via their paracrine activity. The present work aimed to investigate the combined wound-healing potential of BMMSCs and Halimeda macroloba algae extract in immunocompromised rats. High-resolution liquid chromatography-mass spectrometry (HR-LC-MS) investigation of the extract revealed the presence of variant phytochemicals, mostly phenolics, and terpenoids, known for their angiogenic, collagen-stimulating, anti-inflammatory, and antioxidant properties. The BMMSCs were isolated and characterized for CD markers, where they showed a positive expression of CD90 by 98.21% and CD105 by 97.1%. Twelve days after inducing immunocompromise (40 mg/kg hydrocortisone daily), a circular excision was created in the dorsal skin of rats and the treatments were continued for 16 days. The studied groups were sampled on days 4, 8, 12, and 16 after wounding. The gross/histopathological results revealed that the wound closure (99%), thickness, density of new epidermis and dermis, and skin elasticity in the healed wounds were considerably higher in the BMMSCs/Halimeda group than the control group (p < 0.05). RT-PCR gene expression analysis revealed that the BMMSCs/Halimeda extract combination had perfectly attenuated oxidative stress, proinflammatory cytokines, and NF-KB activation at day 16 of wounding. The combination holds promise for regenerative medicine, representing a revolutionary step in the wound healing of immunocompromised patients, with still a need for safety assessments and further clinical trials.


Asunto(s)
Células Madre Mesenquimatosas , Piel , Ratas , Animales , Piel/patología , Cicatrización de Heridas , Fenómenos Fisiológicos Celulares , Epidermis
10.
Metabolites ; 13(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367890

RESUMEN

Tamarindus indica Linn (tamarind, F. Leguminosae) is one of the most widely consumed edible fruits in the world. Phytochemical investigation of tamarind pulp n-butanol fraction yielded one new (+)-pinitol glycoside compound 1 (25% w/w), and 1D, 2D NMR, and HRESIMS investigation were used to confirm the new compound's structure. (+)-Pinitol glycoside showed anti-Alzheimer potential that was confirmed in prophylactic and treatment groups by decreasing time for the T-maze test; decreased TAO, brain and serum AChE, MDA, tau protein levels, and ß amyloid peptide protein levels; and increasing GPX, SOD levels, and in vivo regression of the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. The reported molecular targets for human Alzheimer's disease were then used in a network pharmacology investigation to examine their complex interactions and identify the key targets in the disease pathogenesis. An in silico-based analysis (molecular docking, binding free energy calculation (ΔGBinding), and molecular dynamics simulation) was performed to identify the potential targets for compound 1. The findings of this study may lead to the development of dietary supplements for the treatment of Alzheimer's disease.

11.
Medicina (Kaunas) ; 59(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241221

RESUMEN

Background and Objectives: Colon cancer (CC) has a high mortality rate and is often diagnosed at an advanced stage in Saudi Arabia. Thus, the identification and characterization of potential new cancer-specific biomarkers are imperative for improving the diagnosis of CC by detecting it at an early stage. Cancer-testis (CT) genes have been identified as potential biomarkers for the early diagnosis of various cancers. Among the CT genes are those belonging to the SSX family. In order to assess the usefulness of SSX family genes as cancer biomarkers for the detection of early-stage CC, the goal of this research was to validate the expressions of these genes in patients with CC and in matched patients with normal colons (NCs). Materials and Methods: RT-PCR assays were used to analyze the SSX1, SSX2, and SSX3 family gene expression levels in 30 neighboring NC and CC tissue samples from male Saudi patients. Epigenetic alterations were also tested in vitro using qRT-PCR analysis to determine whether reduced DNA methyltransferase or histone deacetylation could stimulate SSX gene expression via 5-aza-2'-deoxycytidine and trichostatin treatments, respectively. Results: The RT-PCR results showed SSX1 and SSX2 gene expression in 10% and 20% of the CC tissue specimens, respectively, but not in any of the NC tissue specimens. However, no SSX3 expression was detected in any of the examined CC or NC tissue samples. In addition, the qRT-PCR results showed significantly higher SSX1 and SSX2 expression levels in the CC tissue samples than in the NC tissue samples. The 5-aza-2'-deoxycytidine and trichostatin treatments significantly induced the mRNA expression levels of the SSX1, SSX2, and SSX3 genes in the CC cells in vitro. Conclusions: These findings suggest that SSX1 and SSX2 are potentially suitable candidate biomarkers for CC. Their expressions can be regulated via hypomethylating and histone deacetylase treatments, subsequently providing a potential therapeutic target for CC.


Asunto(s)
Neoplasias del Colon , Neoplasias Testiculares , Humanos , Masculino , Histonas/genética , Metilación , Decitabina/farmacología , Decitabina/uso terapéutico , Reacción en Cadena de la Polimerasa , Biomarcadores de Tumor/genética , Neoplasias del Colon/genética , Proteínas de Fusión Oncogénica/genética
12.
Genes (Basel) ; 14(3)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36980864

RESUMEN

Genetic polymorphism in long noncoding RNA (lncRNA) HOTAIR is linked with the risk and susceptibility of various cancers in humans. The mechanism involved in the development of CRC is not fully understood but single nucleotide polymorphisms (SNPs) can be used to predict its risk and prognosis. In the present case-control study, we investigated the relationship between HOTAIR (rs12826786, rs920778, and rs1899663) polymorphisms and CRC risk in the Saudi population by genotyping using a TaqMan genotyping assay in 144 CRC cases and 144 age- and sex-matched controls. We found a significant (p < 0.05) association between SNP rs920778 G > A and CRC risk, and a protective role of SNPs rs12826786 (C > T) and rs1899663 (C > A) was noticed. The homozygous mutant "AA" genotype at rs920778 (G > A) showed a significant correlation with the female sex and colon tumor site. The homozygous TT in SNP rs12816786 (C > T) showed a significant protective association in the male and homozygous AA of SNP rs1899663 (C > A) with colon tumor site. These results indicate that HOTAIR can be a powerful biomarker for predicting the risk of colorectal cancer in the Saudi population. The association between HOTAIR gene polymorphisms and the risk of CRC in the Saudi population was reported for the first time here.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , ARN Largo no Codificante , Femenino , Humanos , Masculino , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , Arabia Saudita
13.
Cancer Manag Res ; 15: 87-98, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733670

RESUMEN

Introduction: Herbs are excellent sources of medicinal substances, and their curative abilities have been recognized to treat many ailments and are used for example as antioxidants, analgesics, anti-inflammatories, antipyretics, and many other medicinal uses. The properties of natural compounds and their health effects have been studied extensively, especially those that originate from plant sources such as ginger. The ginger plant contains many chemical compounds, such as 6-gingerol, which is characterized by containing active groups such as carbonyl and hydroxide, which can be attached to metal molecules. This is what was done in this study, where the formation of complexes with a group of metals was studied and their effect on cancer cells was investigated. These complexes will open new horizons for further study of medicinal uses. Methods: The synthesis of gingerol-metal complexes was carried out by conjugating gingerol molecules with Ag, Au, Cd, Co, Cu, Ni, and Zn metal ions. The extracted gingerol was transferred to culture tubes and deionized water-DMSO were added followed by sonication. The tubes were incubated at 90°C for two days as well as the control sample. The samples were then filtered and the complex solutions were transferred into new tubes for further studies. Different characterization techniques such as FT-IR, UV-vis spectroscopy, FESEM, and EDX are used to confirm the formation of the complexes. The in vitro of the complexes was tested by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay against the human colorectal cancer cell lines HCT116 and HT29 which exhibited strong cytotoxicity. Results: The gingerol-metal complexes showed an enhancement as an anticancer agent compared to the control. The in vitro anticancer activity showed that the Ag-gingerol complex showed the most activity among the other complexes. Discussion: Gingerol-metal complexes can inhibit cancer cells, noting that the potency of the complex depends on the type of metal used.

14.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36355490

RESUMEN

BACKGROUND: The expression of human germline genes is restricted to the germ cells of the gonads, which produce sperm and eggs. The germline genes involved in testis development and potentially activated in cancer cells are known as cancer-testis (CT) genes. These genes are potential therapeutic targets and biomarkers, as well as drivers of the oncogenic process. CT genes can be reactivated by treatment with drugs that demethylate DNA. The majority of the existing literature on CT gene activation focuses on X-chromosome-produced CT genes. We tested the hypothesis that epigenetic landscape changes, such as DNA methylation, can alter several CT gene expression profiles in cancer and germ cells. METHODS: Colon cancer (CC) cell lines were treated with the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine, or with the histone deacetylase inhibitor (HDACi) trichostatin A (TSA). The effects of these epigenetic treatments on the transcriptional activation of previously published CT genes (CTAG1A, SCP2D1, TKTL2, LYZL6, TEX33, and ACTRT1) and testis-specific genes (NUTM1, ASB17, ZSWIM2, ADAM2, and C10orf82) were investigated. RESULTS: We found that treatment of CC cell lines with 5-aza-2'-deoxycytidine or TSA correlated with activation of X-encoded CT genes and non-X-encoded CT genes in somatic (non-germline) cells. CONCLUSION: These findings confirm that a subset of CT genes can be regulated by hypomethylating drugs and subsequently provide a potential therapeutic target for cancer.

15.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215509

RESUMEN

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Asunto(s)
Nitrosaminas , Pancreatitis , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Enfermedad Aguda , Animales , Carcinógenos , Ceruletida/toxicidad , Citocinas , Desintegrinas , Endopeptidasas , Fibrosis , Interleucina-6/genética , Interleucina-6/metabolismo , Cetonas , Ratones , Nicotina , Pancreatitis/tratamiento farmacológico , Pancreatitis/genética , Péptido Hidrolasas , Factor de Necrosis Tumoral alfa/metabolismo
16.
Heliyon ; 8(8): e10241, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36046533

RESUMEN

The current study explores the rhetoric and stylistic properties of the very first sentence that scholars generate in their research article introductions. The study draws upon a corpus of 502 sentences written in the fields of linguistics and translation, half of which are collected from national low-impact journals affiliated with Gulf universities in the Middle East while the other half are elicited from international high-impact journals. The study shows that half of the authors in high-impact journals as opposed to a quarter of the authors in low-impact journals provide citations to their very first sentence. These preferences are accounted for by the distinction drawn by Swales (1990) between centrality claims and topic generalizations under Move 1. Contra the predictions made by Create A Research Space Model proposed by Swales (1990, 2004), the results show that the authors of high-impact journals are more liberal in starting their introduction with a sentence of Move 2 or 3 type. In contrast, the authors of low-impact journals prefer to begin with a sentence of Move 1 type that is shorter in word count, more metaphorical, less academic as well as full of typos and grammatical errors.

17.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037355

RESUMEN

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Asunto(s)
Proteínas de Unión al ADN , Inmunidad Innata , Interleucina-1beta , Interleucina-6 , Enfisema Pulmonar , Animales , Apoptosis , Caspasa 1/metabolismo , Receptor gp130 de Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Enfisema Pulmonar/inmunología
18.
ACS Omega ; 7(23): 20267-20279, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721949

RESUMEN

An attempt has been made to optimize ketoconazole (KTZ)-loaded cationic nanoemulsion for topical delivery followed by in vitro, ex vivo, and in vivo evaluations. Central composite design suggested a total of 13 outcomes at 3 factors and 2 levels against 6 responses. Formulations were characterized for globular size, polydispersity index, pH, ζ potential, % entrapment efficiency (% EE), and drug content. Moreover, the optimized KTZ-CNM13 was compared against drug suspension (KTZ-SUS), commercial cream, and anionic nanoemulsion for in vitro drug release, ex vivo permeation, in vitro hemolysis, antifungal assay, in vivo dermal irritancy, and long-term stability. KTZ-CNM13 was found to have a low size (239 nm), an optimal ζ potential (+22.7 mV), a high % EE (89.1%), a spherical shape, a high drug content (98.9%), and a high numerical desirability value (1.0). In vitro drug release behavior of KTZ from KTZ-CNM13 was 7.54- and 1.71-folds higher than those of KTZ-ANM13 and KTZ-SUS, respectively, at 24 h. The permeation rate values were ordered as KTZ-CNM13 > KTZ-ANM13 > KTZ-MKT > KTZ-SUP due to various studied factors. High values of zone of inhibition for KTZ-CNM13 were observed against Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei as compared to KTZ-SUS. In vitro hemolysis and in vivo irritation studied confirmed the safety concern of the nanoemulsion at the explored composition. Long-term stability result revealed a stable product at the explored temperature for a year. Conclusively, cationic nanoemulsion is a promising approach to deliver KTZ for high permeation and therapeutic efficacy.

19.
Genes (Basel) ; 13(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35627192

RESUMEN

In Saudi Arabia, colon cancer (CC) is the most prevalent cancer in men and the third most common cancer in women. Rather than being detected through screening programs, most CC cases are diagnosed mainly during clinical exams. Because of the slow growth of CC and its ability to be treated at an early stage, screening for CC can reduce the incidence of death and mortality. Consequently, there is an urgent need to identify a potential new cancer-specific biomarker for detecting early illness. Much research has been conducted on distinct antigen classes as potential new cancer-specific biomarkers for the early identification of malignancy. The cancer-testis antigens (CTAs) are one such category of antigens, with protein presence largely normally confined to human germ line cells in the testis and aberrantly produced in some cancer cells. CTAs are potentially valuable for use as cancer biomarkers and in cancer therapeutics due to their distinctive expression pattern. The aim of this current study was to identify potential cancer-testis (CT) gene biomarkers in Saudi Arabian CC patients. In this study, a total of 20 matching CC and normal colon (NC) tissues were obtained from the Saudi population. Any genes that showed expression in CC tissues but not in matching NC tissues were subsequently verified for mRNA expression in eight breast and eight leukemia malignancies using RT-PCR to determine the specificity of any CC biomarkers. CTAG1A, SPZ1, LYZL6, SCP2D1, TEX33, and TKTL2 genes were expressed in varying numbers of CC tissues compared to no measurable expressions in all NC tissue specimens, making these genes suitable potential candidates for CC markers. The most frequently expressed CT genes in CC patients were CTAG1A (35%) and SCP2D1 (35%), followed by TKTL2 (25%), SPZ1 (20%), LYZL6 (15%), and TEX33 (5%). The LYZL6 gene shows a weak RT-PCR product in 25% of breast cancer (BC) patients but not in leukemia patients. The SCP2D1 gene appears to display expression in all leukemia patients but not in the BC patients. TKTL2 expression was also observed in 50% of leukemia samples but not in the BC samples. More experiments at the protein level and with a larger cohort of patients are required to evaluate this finding.


Asunto(s)
Neoplasias de la Mama , Neoplasias del Colon , Leucemia , Neoplasias Testiculares , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/genética , Femenino , Marcadores Genéticos , Humanos , Masculino , Arabia Saudita , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
20.
J Oncol ; 2021: 6180337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721579

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a major health concern worldwide. A series of sequential accumulation of genetic and epigenetic changes are responsible for the initiation and progression of diseases via the normal > adenoma > carcinoma sequence. Genetic variants in crucial cancer-causing genes are known to mediate the risk of cancer. OBJECTIVE: In this case-control study, we examined single nucleotide polymorphism (SNP) in HER1 (rs763317 and rs3752651) and HER2 (rs1136201 and rs1058808) genes to assess their role in the susceptibility of CRC in a Saudi population. METHODS: TaqMan allelic discrimination assay was utilized to identify the genotypes in 163 normal and 143 CRC patients. RESULTS: In the overall analysis, the rs3752651 and rs1136201 were significantly associated with the risk of CRC. Although none of the examined SNPs had any impact on the age at which CRC was diagnosed, interestingly, three SNPs showed a significant association based on gender. The rs3752651 conferred significant protection only in men, whereas rs1136201 diminished the risk and rs1058808 considerably increased the susceptibility of CRC only in women. CONCLUSIONS: Our result suggests that these SNPs in HER1 and HER2 after validation in larger cohorts of different ethnicities may be utilized as genetic screening markers for predicting colorectal cancer predisposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...