Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(12)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37371095

RESUMEN

The skin is the organ that serves as the outermost layer of protection against injury, pathogens, and homeostasis with external factors; in turn, it can be damaged by factors such as burns, trauma, exposure to ultraviolet light (UV), infrared radiation (IR), activating signaling pathways such as Toll-like receptors (TLR) and Nuclear factor erythroid 2-related factor 2 (NRF2), among others, causing a need to subsequently repair and regenerate the skin. However, pathologies such as diabetes lengthen the inflammatory stage, complicating the healing process and, in some cases, completely inhibiting it, generating susceptibility to infections. Exosomes are nano-sized extracellular vesicles that can be isolated and purified from different sources such as blood, urine, breast milk, saliva, urine, umbilical cord bile cells, and mesenchymal stem cells. They have bioactive compounds that, thanks to their paracrine activity, have proven to be effective as anti-inflammatory agents, inducers of macrophage polarization and accelerators of skin repair and regeneration, reducing the possible complications relating to poor wound repair, and prolonged inflammation. This review provides information on the use of exosomes as a promising therapy against damage from UV light, infrared radiation, burns, and skin disorders.


Asunto(s)
Quemaduras , Exosomas , Enfermedades de la Piel , Femenino , Humanos , Cicatrización de Heridas , Exosomas/metabolismo , Piel/patología , Enfermedades de la Piel/patología , Quemaduras/terapia
2.
Materials (Basel) ; 15(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806844

RESUMEN

The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the "c" axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA