Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 261: 119754, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128664

RESUMEN

The presence of pesticide residues in waterbed sediments poses a significant concern for aquatic ecosystems' health. This study examined pesticide contamination in sediments of 38 water bodies, embedded in agricultural-dominated regions, across eight European countries. Three indicators were targeted: occurrence, type, and concentrations of multiple pesticide residues in sediments. 196 pesticide residues (including degradation products) were tested in the sediment samples. The analytical results showed that only one sample was 'pesticide-free', three samples contained a single pesticide residue, and the remaining 34 samples contained mixtures of residues. Overall, 99 different residues were found in the sediments, with a maximum of 48 in a single sample. Twenty-seven out of the 99 detected residues were not approved for agricultural use at the time of sampling. The numbers of detected residues and pesticide levels varied among countries. AMPA, glyphosate and DDTs were the most common residues in sediment samples with frequencies of 76, 61, and 52%, respectively. The sediments from the Czech Republic had the highest pesticide concentrations, with total pesticide concentrations ranging between 600 and 1200 µg kg-1. The lowest total pesticide concentrations were found in Slovenia, Switzerland, Croatia, and Denmark, ranging between 80 and 120 µg kg-1. Sediments presented a mix of non-persistent and persistent compounds. Twelve of the detected pesticides are very persistent/stable in sediments, raising concerns about the long-term impacts of pesticides. Our study on the distribution of pesticide residues in European sediments provides valuable insights into the extent of pesticide contamination and possible risks of pesticides to water bodies' health. It also underlines the need for monitoring, research, and policy efforts to mitigate the impacts of pesticides, and to evaluate potential risks of re-use of dredged sediments.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Residuos de Plaguicidas , Contaminantes Químicos del Agua , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Residuos de Plaguicidas/análisis , Europa (Continente) , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 948: 174671, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39004368

RESUMEN

The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.


Asunto(s)
Monitoreo del Ambiente , Plaguicidas , Argentina , Humanos , Plaguicidas/análisis , Animales , Europa (Continente) , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Ambientales/análisis , Contaminantes Ambientales/sangre , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Agricultura
3.
Environ Sci Technol ; 58(15): 6744-6752, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568876

RESUMEN

During the growing season of 2021, 201 soil samples from conventionally and organically managed fields from 10 European countries and 8 cropping systems were taken, and 192 residues of synthetic pesticides were analyzed. Pesticide residues were found in 97% of the samples, and 88% of the samples contained mixtures of at least 2 substances. A maximum of 21 substances were found in conventionally managed fields, and a maximum of 12 were found in organically managed fields. The number and concentration of pesticide residues varied significantly between conventional and organic fields in 70 and 50% of the case study sites, respectively. Application records were available for a selected number of fields (n = 82), and these records were compared to the detected substances. Residues from 52% of the applied pesticides were detected in the soils. Only 21% of the pesticide residues detected in the soil samples were applied during the 2021 growing season. From the application data, predicted environmental concentrations of residues in soil were calculated and compared to the measured concentrations. These estimates turned out not to be accurate. The results of this study show that most European agricultural soils contain mixtures of pesticide residues and that current calculation methods may not reliably estimate their presence.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Suelo/química , Agricultura , Plaguicidas/análisis , Europa (Continente)
4.
Water Res ; 254: 121419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484551

RESUMEN

Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina. Mixtures of pesticide residues were detected in all water bodies (20, median; 8-40 min-max). Total pesticide levels found ranged between 6.89 and 5860 ng/L, highlighting herbicides as the dominant type of pesticides. Glyphosate was the compound with the highest median concentration followed by 2,4-D and MCPA, and in a lower degree by dimethomorph, fluopicolide, prothioconazole and metolachlor(-S). Argentina was the site with the highest total pesticide concentration in water bodies followed by The Netherlands, Portugal and France. One or more pesticides exceeded the threshold values established in the European Water Framework Directive for surface water in 9 out of 11 case study sites (CSS), and the total pesticide concentration surpassed the reference value of 500 ng/L in 8 CSS. Although only 5 % (bifenthrin, dieldrin, fipronil sulfone, permethrin, and terbutryn) of the individual pesticides denoted high risk (RQ > 1), the ratios estimated for pesticide mixtures suggested potential environmental risk in the aquatic compartment studied.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Contaminantes Químicos del Agua , Agua , Ecosistema , Argentina , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Plaguicidas/análisis , Ríos/química
5.
Environ Int ; 181: 108280, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37924602

RESUMEN

Intensive and widespread use of pesticides raises serious environmental and human health concerns. The presence and levels of 209 pesticide residues (active substances and transformation products) in 625 environmental samples (201 soil, 193 crop, 20 outdoor air, 115 indoor dust, 58 surface water, and 38 sediment samples) have been studied. The samples were collected during the 2021 growing season, across 10 study sites, covering the main European crops, and conventional and organic farming systems. We profiled the pesticide residues found in the different matrices using existing hazard classifications towards non-target organisms and humans. Combining monitoring data and hazard information, we developed an indicator for the prioritization of pesticides, which can support policy decisions and sustainable pesticide use transitions. Eighty-six percent of the samples had at least one residue above the respective limit of detection. One hundred residues were found in soil, 112 in water, 99 in sediments, 78 in crops, 76 in outdoor air, and 197 in indoor dust. The number, levels, and profile of residues varied between farming systems. Our results show that non-approved compounds still represent a significant part of environmental cocktails and should be accounted for in monitoring programs and risk assessments. The hazard profiles analysis confirms the dominance of compounds of low-moderate hazard and underscores the high hazard of some approved compounds and recurring "no data available" situations. Overall, our results support the idea that risk should be assessed in a mixture context, taking environmentally relevant mixtures into consideration. We have uncovered uncertainties and data gaps that should be addressed, as well as the policy implications at the EU approval status level. Our newly introduced indicator can help identify research priority areas, and act as a reference for targeted scenarios set forth in the Farm to Fork pesticide reduction goals.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Agricultores , Productos Agrícolas , Polvo , Suelo , Agua , Monitoreo del Ambiente
6.
Sci Total Environ ; 905: 167797, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37838044

RESUMEN

Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 µg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).


Asunto(s)
Contaminación del Aire Interior , Residuos de Plaguicidas , Plaguicidas , Humanos , Residuos de Plaguicidas/análisis , Monitoreo del Ambiente , Polvo/análisis , Agricultores , Argentina , Plaguicidas/análisis , Europa (Continente) , Contaminación del Aire Interior/análisis
7.
PLoS One ; 16(11): e0259748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780516

RESUMEN

Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residues in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy.


Asunto(s)
Plaguicidas , Animales , Argentina , Productos Agrícolas/metabolismo , Ecosistema , Europa (Continente) , Humanos
8.
ACS Omega ; 4(22): 19647-19654, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788595

RESUMEN

Tannic acid is a calcite flotation agent widely used in mineral processing. To better understand the physicochemical reactivity of tannic acid toward calcite, the present work focused on studying the mechanisms involved during the adsorption process. Hence, in order to determine the optimal physicochemical parameters, tannic acid adsorption onto calcite was investigated at various experimental conditions such as contact time, initial tannic acid concentration, solution pH, particle size, and temperature. The obtained results showed that the adsorption capacity of tannic acid increased significantly with initial tannic acid concentration. Furthermore, tannic acid adsorption onto calcite was highly dependent on solution pH, and the optimal adsorption amount was found to be at pH 8. Therefore, the behavior controlling the studied adsorption process could be attributed to ion exchange. Moreover, the adsorption mechanism has been determined by isothermal, kinetic, and thermodynamic studies. Thus, the Sips isotherm model was the one that best predicted equilibrium data. Adsorption kinetics followed a pseudo-second-order model, indicating that the adsorption process was controlled by the chemical reaction. The estimated thermodynamic parameters revealed that the adsorption reaction was exothermic in nature and the system entropy decreased nonsignificantly during this process. Based on these results, the study of the physicochemical interaction between tannins and carbonates has potential application in mineral processing as well as in other fields.

9.
Sci Total Environ ; 649: 610-619, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176472

RESUMEN

iSQAPER project - Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience - aims to develop an app to advise farmers on selecting the best Agriculture Management Practice (AMPs) to improve soil quality. For this purpose, a soil quality index has to be developed to account for the changes in soil quality as impacted by the implementation of the AMPs. Some promising AMPs have been suggested over the time to prevent soil degradation. These practices have been randomly adopted by farmers but which practices are most used by farmers and where they are mostly adopted remains unclear. This study is part of the iSQAPER project with the specific aims: 1) map the current distribution of previously selected 18 promising AMPs in several pedo-climatic regions and farming systems located in ten and four study site areas (SSA) along Europe and China, respectively; and 2) identify the soil threats occurring in those areas. In each SSA, farmers using promising AMP's were identified and questionnaires were used to assess farmer's perception on soil threats significance in the area. 138 plots/farms using 18 promising AMPs, were identified in Europe (112) and China (26).Results show that promising AMPs used in Europe are Crop rotation (15%), Manuring & Composting (15%) and Min-till (14%), whereas in China are Manuring & Composting (18%), Residue maintenance (18%) and Integrated pest and disease management (12%). In Europe, soil erosion is the main threat in agricultural Mediterranean areas while soil-borne pests and diseases is more frequent in the SSAs from France and The Netherlands. In China, soil erosion, SOM decline, compaction and poor soil structure are among the most significant. This work provides important information for policy makers and the development of strategies to support and promote agricultural management practices with benefits for soil quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA